
Semantic Web Empowered City Trip Planning

Master Thesis of Chris Dijkshoorn & Bas Groenewoud

Year
2011

Supervisors
Emanuele Della Valle

Spyros Kotoulas
Second Reader

Frank van Harmelen

Acknowledgements

Firstly, we would like to thank our supervisors Emanuele della Valle and Spyros
Kotoulas. Emanuele della Valle for not dictating what we should do and letting
us make our own mistakes, while subtly steering us in the right direction. Every
meeting, we proposed a number of new features. Helping us deal with the
ever growing size of the application, by discussing alternative approaches and
solutions, has helped us focus on the things that matter.

We thank Spyros Kotoulas for his adequate and fast support, concerning
many things. While working on a mini master project, we stated the desire to
study abroad. Before we knew it, a position in Italy was arranged. Helping us
manage working with the LarKC platform and taking care of many organiza-
tional things are among the things we are very grateful for.

Secondly we would like to thank the people at Cefriel, especially Daniele
Dell’Aglio and Irene Celino. The provided support and knowledge concerning
the Semantic Web and specifically LarKC, was very welcome. When we pro-
posed to present our end result at Cefriel, we were surprised it was taken so
seriously. Nevertheless we enjoyed the day and the presentation.

Thirdly we would individually like to thank some people for their help in
realizing this master thesis. Chris: I would like to thank my family, for their
unconditional support, despite that I gave them a hard time explaining to peo-
ple, what it exactly was I did in Italy. I also appreciate the exercised patience
of all my friends visiting from the Netherlands while listening to city trip plan-
ner related stories. I thank Bas for taking the time to consider some of my
ideas and bringing forth the energy for discussing whether we should actually
be implementing them.

Bas: I would like to thank my girlfriend Tessa for her love, support, her
multiple visits to Italy and not getting too angry for not showing up on Skype
whenever I was working on the city trip planner and forgot about the time.
I would also like to thank my parents and my brother for their unconditional
support and also for their visit to Como. I would like to thank Chris for his
endless flow of new ideas, his never ending enthusiasm and for always trying to
make the problem even more complex. Finally, I would like to thank the Italian
people for making my stay in Como much more comfortable by providing me
with excellent coffee, tasty pizza’s and the always delicious ice creams.

I

Abstract

Making a planning for a city trip is not an easy thing to do. Often, the time a
tourist spends in a city is limited so choices of what to visit have to be made.
Making a careful selection of things to visit and deciding on the order of visiting
them, takes time. Support in this process would sometimes be welcome. In this
master thesis, we introduce an application which automates this task, using the
LarKC platform and Semantic Web techniques. The used dataset is deducted
from the LinkedGeoData.org project and an ontology is created to structure it.

We introduce two strategies for selecting points of interest: the Distance
Times Rating strategy and the Radius strategy. Each strategy is able to generate
multiple sets with selected points. Next, a Traveling Salesman Problem with
Time Windows algorithm is used to determine the optimal sequence of visiting
the points, resulting in multiple city trip plans.

The city trip plans are ranked based on the quality of the included points,
the time spent at those points and the travel time. The two selection strate-
gies are evaluated using the Discounted Cumulated Gain method. This is an
evaluation measure which considers the relevance of the found city trip plan in
combination with its position in the list of results. The city plans generated
by the two selection strategies are compared to an optimal situation, created
by running a baseline that generates all the possible combination of points of
interest, considering a given set of user preferences.

II

Contents

1 Introduction 1

2 State Of The Art 5
2.1 Semantic Web . 5

2.1.1 Semantic Web Basics . 5
2.1.2 Linked Data . 6
2.1.3 Resource Description Framework 7
2.1.4 RDF Schema & The Web Ontology Language 8

2.2 Large Knowledge Collider . 9
2.2.1 LarKC Architecture . 9
2.2.2 LarKC Plug-ins . 11
2.2.3 LarKC Workflows . 12

2.3 Traveling Salesman Problem . 13
2.3.1 Generic Traveling Salesman Problem 14
2.3.2 Traveling Salesman Problem With Time Windows 15
2.3.3 Time Dependent Traveling Salesman Problem 16

2.4 OpenStreetMap.org & LinkedGeoData.org 16
2.4.1 OpenStreetMap.org . 16
2.4.2 LinkedGeoData.org . 18

2.5 Electronic Guides . 19
2.5.1 TripAdvisor . 20
2.5.2 Lonely Planet & Rough Guide City Apps 21

2.6 Automated City Trip Planners 22

3 Problem Setting 24
3.1 Scenario . 24
3.2 User Requirements . 26
3.3 Problem Formalization . 26

4 Architecture 30
4.1 System Architecture In LarKC 30
4.2 Modelling Points Of Interest . 31
4.3 Modelling The Distance Between Points Of Interest 33
4.4 Categorizing Points Of Interest 33

III

4.5 LarKC Plug-ins . 35
4.5.1 Planning Decider . 35
4.5.2 Point Selecter . 35
4.5.3 TSPTW Reasoner . 36
4.5.4 Rank Decider . 36
4.5.5 Cartographer . 36

4.6 Frontend . 37

5 Strategies 39
5.1 Baseline Strategy . 39

5.1.1 Description Of The Baseline Strategy 40
5.1.2 Example . 43

5.2 Distance Times Rating Strategy 45
5.3 Radius Strategy . 54

6 Data 61
6.1 Data Sources . 61
6.2 Pre-processing . 62

6.2.1 Localized Datasets . 62
6.2.2 Ontology Mapping . 63
6.2.3 Added Properties . 63

6.3 Data Analysis . 64
6.4 Data Quality . 67

7 Implementation 69
7.1 Implementation Of Data Objects 69

7.1.1 Point Of Interest . 69
7.1.2 Class . 70

7.2 Testing Environments . 70
7.2.1 Test Environment . 71
7.2.2 Grading Environment . 71
7.2.3 Evaluation Environment 72

7.3 LarKC . 72
7.3.1 Planning Decider . 72
7.3.2 Point Selecter . 75
7.3.3 TSPTW Reasoner . 75
7.3.4 Rank Decider . 76
7.3.5 Cartographer . 77

8 Evaluation 79
8.1 Method . 80

8.1.1 Cumulated Gain . 80
8.1.2 Success Criteria . 81
8.1.3 Experimental Settings . 81

8.2 Results . 83
8.2.1 Results Of The Execution Time Experiments 83

IV

8.2.2 Results Of The Quality Experiments 84
8.2.3 Resulting City Trip Plans 89

9 Discussion & Future Work 96
9.1 Execution Time Experiment . 96
9.2 Quality Experiments . 97
9.3 Quality TSPTW Solver . 98
9.4 Conformation to The Semantic Web 99
9.5 Future Work . 99

10 Conclusion 102

Bibliography 104

Glossary 109

A Taxonomy 112

B Ontology Mapping 113

V

List of Figures

2.1 Linking Open Data cloud . 7
2.2 RDF triple . 8
2.3 The algorithm illustrating the initial idea of LarKC. 9
2.4 The high-level view of the LarKC architecture. 10
2.5 Event pipeline . 12
2.6 Workflow description of the event pipeline 13
2.7 Generic TSP Example . 14
2.8 The website of the OpenStreetMap project. 17
2.9 Overview of LinkedGeoData’s architecture. 19
2.10 Part of the website of TripAdvisor. 20

3.1 UML Activity Diagram describing the use of the system. 25
3.2 Different types of matching between classes. 28

4.1 System architecture . 30
4.2 Datastructure Point Of Interest 32
4.3 Data linked to Duomo . 32
4.4 Part of the ontology . 34

5.1 Trees visualizing Baseline example. 44
5.2 Process of Radius strategy . 54

6.1 Redundant LinkedGeoData triple 64
6.2 The amount of instances per class in Milan 65
6.3 Map representing the dataset of Milan 65
6.4 The amount of instances per class in Amsterdam 66
6.5 Map representing the dataset of Amsterdam 67

7.1 PlanningDecider workflow . 73
7.2 Radius Pipeline workflow . 74
7.3 N3 representation of a set . 75
7.4 N3 representation of a plan . 76
7.5 N3 representation of grade and rank 77
7.6 Example GPX file Milan . 77

8.1 Box-and-whisker plot LarKC execution time 83

VI

8.2 Discounted cumulated gain curves of Milan range 10 85
8.3 Normalized discounted cumulated gain curves of Milan range 10 85
8.4 Discounted cumulated gain curves of Milan range 200 86
8.5 Normalized discounted cumulated gain curves of Milan range 200 86
8.6 Discounted cumulated gain curves of Amsterdam range 10 87
8.7 Discounted cumulated gain curves of Amsterdam range 200 . . . 88
8.8 Map representing the best plan on Milan 90
8.9 Map representing first DTR plan on Milan 91
8.10 Map representing first Radius plan on Milan 92
8.11 Map representing first DTR plan on Amsterdam 94
8.12 Map representing first Radius plan on Amsterdam 95

VII

List of Tables

2.1 OpenStreetMap statistics . 18

5.1 Objects used by multiple strategies. 39
5.2 Objects used by the Baseline strategy. 40
5.3 Example classes Baseline . 43
5.4 Resulting T-sets of the Baseline example. 45
5.5 Objects used by the DTR strategy 45
5.6 Example ClassLists object . 46
5.7 Objects for Radius strategy. 55

8.1 Amount of possible sets with an upper bound of 8. 79
8.2 Results of the speed experiment 84
8.3 POI information for the best Milan plan. 90
8.4 POI information for the first found DTR plan on Milan. 91
8.5 POI information for the first found Radius plan on Milan. 92
8.6 POI information for the first found DTR plan on Amsterdam. . . 94
8.7 POI information for the first found Radius plan on Amsterdam. . 95

B.1 Mapping of LinkedGeoData ontology to City Trip Planner ontology113

VIII

Chapter 1

Introduction

Tourists visiting a city for a short period of time will not be able to visit every-
thing the city has to offer. Therefore, a selection has to be made. Guidebooks
are widely used to find appropriate activities in an unknown city. The books
include information collected by editors and new versions are published on reg-
ular basis to keep the provided information up to date. The guidebook is an
important part of the process of visiting a new place: “because it mediates the
relationship between tourist and destination, as well as the relationship between
host and guest” [9]. But would it not be better to use information that is always
up to date and tailored to a person’s interests [13]?

After deciding on what to do in a city, a tourist still has to figure out in what
order to visit the chosen places. Considering the locations and opening times
of interesting sights and activities, this can be a complex puzzle similar to the
Traveling Salesman Problem (TSP) [3] and its variants, the Traveling Salesman
Problem with Time Windows (TSPTW) [19] and the Time Dependent Traveling
Salesman Problem (TDTSP) [23]. These problems are extensively researched in
the field of Operational Research (OR) and algorithms finding optimal solutions
in a limited period of time do exist.

The combination of the processes of choosing what to visit and in what order
to visit the chosen points is called the Tourist Trip Design Problem (TTDP) [49].
By solving this design problem automatically in a short time span while consid-
ering the preferences of the user, a tourist could set out to experience the city
in moments. However, there is no easy way of solving the problem, mainly due
to the huge amount of different possible combinations [45].

Multiple attempts to create electronic guidebooks were made [16] [30], but
one of the problems which arose, concerned the acquisition of appropriate data
and maintaining this data. The most common solution is hiring staff who enter
the data manually. Depending on the size of the city, this is quite a demanding
task. When the data also comprises information about events, continuous revi-
sions have to be made. Luckily, today a lot of relevant data is published on the
Internet, enabling the automation of this data acquisition process.

1

Services such as Google Maps1, Foursquare2 and Eventful3 provide a variety
of useful information. Some of the data in these datasets is “user generated” and,
provided that there is a lively community, it will be updated on a frequent basis.
None of the sources mentioned above will include all the information that the
others include, so in order to enrich the obtained data, combining information
from multiple sources is useful.

Semantic Web techniques can help us effectively combine data from all over
the Web [44]. The appropriate way of saving this data is by using the Resource
Description Framework (RDF) [12]. The data can be structured and inter-
linked using the Web Ontology Language (OWL) [40]. Taxonomies of tourist
attractions are already available and can, with some adaptions and refinements,
function as a basis for a useful tourist attraction ontology [35].

There are multiple sources of geographical information on the Internet, al-
though sources utilizing Semantic Web techniques are more scarce. GeoNames4
offers a well structured dataset containing a lot of information about geograph-
ical entities such as countries and place names. More fine grained information
can be obtained using the OpenStreetMaps initiative [28], which is a popular
system enabling collaborative map making. Many Points Of Interest (POIs) are
identified and due to the lively community, the amount and quality of the data
keeps increasing [43]. Data from the OpenStreetMaps project is transformed
into RDF and made available by LinkedGeoData.org, which provides a SPARQL
endpoint but also releases complete datasets [7]. In addition to providing infor-
mation about POIs, extracts of the maps can also be used in combination with
routing algorithms to find paths from one point to another [43].

Processing the obtained data and reasoning over it is no easy task. The use
of a Semantic Web platform can simplify the process. LarKC is such a platform,
it is defined by the developers as: “a platform for massive distributed incomplete
reasoning that will remove the scalability barriers of currently existing reason-
ing systems for the Semantic Web” [20]. The LarKC platform is developed to
make effective reasoning with huge amounts of data, from different data sources,
possible. LarKC allows developers to build applications using different kinds of
plug-ins that run on top of the platform.

A use case developed for the platform relevant to city trip planning, is the
Urban LarKC application [47] [48]. It focuses on a specific case of pervasive
computing: urban computing. Whereas most forms of pervasive computing
handle small contained spaces with sensors (e.g. “smart houses” and “intelligent
rooms supporting the elderly”), urban computing is concerned with large urban
environments like cities [31]. It is hard to rig a city with sensors, due to privacy
issues and it being a costly activity. This problem is, however, solved by a
multitude of data sources made available for different reasons. Take for example
traffic information, timetables for public transport and data concerning events
and sights in a city. Combining and reasoning over this heterogeneous data is

1http://maps.google.com/
2https://foursquare.com/
3http://eventful.com/
4http://www.geonames.org/

2

a perfect test case for the LarKC platform. At the moment the Urban LarKC
application provides users with three types of information: information about
events, information about monuments and path finding information.

Combining the Urban LarKC project features with ways to solve the TTDP
could result in very useful city trip plans from a tourists point of view. The used
data will be up to date and structuring it using an ontology will enable intelligent
reasoning for solving the TTDP. This adds another layer of reasoning to the
current implemented features of the Urban LarKC application: the selection
of appropriate POIs and the process of finding an optimal route visiting these
points. We believe that using LarKC in combination with plug-ins containing
strategies to pick the appropriate POIs and a plug-in for finding the shortest
route, will result in useful city trip plans in a short period of time. This leads
to the formulation of the following hypothesis:

Hypothesis “The LarKC platform is able to generate 10 city trip
plans of good quality in less than a minute, using strategies for
selecting points of interest from the web of data combined with a
TSPTW solver.”

The research questions below will clarify the goals of the research we conduct.
The first question refers to the point selection process. Since the chosen points
will greatly influence the quality of the resulting city plan, an important goal of
the research is to develop strategies which intelligently pick the POIs.

Research Question 1 How can we effectively select a set of points
of interest which will result in a good city trip plan?

Research question number 2 is a data related question. When we do not want
to enter the data about interesting points ourselves, we need datasets to ex-
tract the appropriate information from. The earlier mentioned GeoNames and
LinkedGeoData datasets could be a source of POI information. Structuring
this data is a must in order to be able to differentiate between different kinds
of POIs. A possibility is that the gathered data is not structured in the way we
would like it to be, so we need to find a way to transform it.

Research Question 2 Which datasets do we use for the extraction
of points of interest and how to structure this data?

We have to find ways to evaluate the city trip plans we obtain. A set of user
preferences can result in a multitude of city trip plans. Which plans are great
and which ones are poor? How to compare the obtained results, considering
time aspects? A tourist will probably not want to wait a couple of days for a
result. The last research question is all about this evaluation process.

Research Question 3 How to evaluate the quality of a city trip
plan?

3

The creative process leading towards this master thesis, as well as the process
of writing the master thesis itself, are done in close collaboration, where the
workload is equally divided between the authors. Every important decision in
the process was made in consultation with our supervisors and supported by
the both of us. In order to provide the exam committee of the VU University
Amsterdam with the possibility of judging us separately, we distinguish our-
selves by both developing a selection strategy. The DTR selection strategy is
developed by Chris Dijkshoorn and described in Section 5.2. The Radius strat-
egy is developed by Bas Groenewoud and described in Section 5.3. The master
thesis is written in the context of the LarKC project under direct supervision of
Emanuele Della Valle at the Como department of Politecnico di Milano, made
possible by an internship scholarship of Erasmus.

The remaining of this master thesis is structured as follows. Chapter 2 gives
an overview of relevant technologies and the city trip planning applications
which are currently available. The problem setting can be found in Chapter
3. Chapter 4 contains the rationale for the architecture of the LarKC applica-
tion. Strategies that intelligently create sets of points of interest are extensively
discussed in Chapter 5. Chapter 6 is a chapter dedicated to the data used
within the application. Our experiences while developing the application are
documented in Chapter 7. The evaluation of the point selection strategies and
overall application is given in Chapter 8. A discussion of these results is given in
Chapter 9 in addition to an overview of possible extensions. The final chapter
is the conclusion of this master thesis.

4

Chapter 2

State Of The Art

In this chapter we relate our electronic city trip planner to other areas. Since we
are using Semantic Web technologies and data, we elaborate on the Semantic
Web and specifically the Resource Description Framework and the Web Ontol-
ogy Language in Section 2.1. In Section 2.2, we provide an extensive insight
in the LarKC platform, since our application runs on this platform. In Section
2.3 we continue with an general introduction into the traveling salesman prob-
lem. We also give an introduction into more restrained versions of this problem,
namely the traveling salesman problem with time windows and the time de-
pendent traveling salesman problem with time windows, because solving TSP
related problems is a significant part of the thesis. In Section 2.4, we introduce
two sources of data which are the most prominent data providers used in the
application: OpenStreetMap and LinkedGeoData. The next two Sections are
focused on travel guides. Section 2.5 focuses on the current state of the art in
electronic guide books. We conclude this chapter with Section 2.6, containing a
description of the competitors in the field: the automated city trip planners.

2.1 Semantic Web
This section is used to elaborate on the Semantic Web. We start with an
introduction of the basics of the Semantic Web in Section 2.1.1. The Linked
Data principles are given in Section 2.1.2. The main building block used for
describing the data is the Resource Description Framework and is described
in Section 2.1.3. We conclude with Section 2.1.4, containing a description of
languages which are used to define the data and the relations between concepts,
RDF Schema and the Web Ontology Language.

2.1.1 Semantic Web Basics
The Semantic Web, as envisioned by Tim Berners-Lee, extends the World Wide
Webs infrastructure with techniques making represented information not only

5

readable for humans, but also interpretable and operable for machines [8]. The
key principles of the Semantic Web are: making datasets available on the Web,
data integration through the interlinking of datasets and the addition of seman-
tics to the data through the use of ontologies.

Standards have been developed to enable the publication and structuring of
data on the web. The Resource Description Framework (RDF) is used to make
statements about resources. Resources are “things" we want to talk about,
like a person, a book or a place. These resources are identified by Universal
Resource Identifiers (URIs) [2]. RDF Schema extends RDF and provides a
minimal ontology representation language, whereas the Web Ontology Language
provides more expressiveness [44]. The SPARQL query language is used to
retrieve information from RDF data sources.

Ontologies can be seen as common conceptualizations, they define the data
and relations between concepts. A multitude of ontologies are developed, de-
scribing diverse concepts ranging from social network information to modeling
information in life sciences. By utilizing the knowledge obtained from ontolo-
gies, machines can reason over data, thereby deducting even richer information.
A summary of the information originating from a multitude of sources and rea-
soning procedures can be presented to a user, surpassing by far the information
a user could have deducted on its own.

2.1.2 Linked Data
The World Wide Web uses hyperlinks to connect one page to another. Applying
this simple but useful principle to data by linking one resource to another results
in a web of data. Over the years, an increasing amount of datasets is interlinked
using URIs. The Linking Open Data Cloud as depicted in Figure 2.1 expands
every year as a result of this. The web of data is evolving into one global data
space, steadily expanding whenever a new dataset is added and interlinked with
the already included datasets.

Linked Data is a term used for a set of best practices for publishing and
connecting structured data on the Web [11]. Four guidelines, as introduced by
Tim Berners-Lee, help integrate the different datasets in a global data space:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using the
standards (RDF)

4. Include links to other URIs, so that they can discover more things

Figure 2.1 depicts a cloud of datasets adhering to these principles. The arrows
between the datasets represent links between data. Some datasets serve as link-
ing hubs, containing many concepts which are also represented in more specific
datasets. DBPedia is the main hub of the Linked Data Cloud. DBPedia is

6

an aggregation of the boxes shown on Wikipedia pages, containing facts about
concepts.

Music
Brainz

(zitgist)

P20

YAGO

World
Fact-
book
(FUB)

WordNet
(W3C)

WordNet
(VUA)

VIVO UF
VIVO

Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UMBEL

UK Post-
codes

legislation
.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov

.uk

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

The Open
Library
(Talis)

t4gm

Surge
Radio

STW

RAMEAU
SH

statistics
data.gov

.uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

Semantic
Crunch
Base

semantic
web.org

Semantic
XBRL

SW
Dog
Food

rdfabout
US SEC

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS

KISTI
JISC

IRIT

IEEE

IBM

ERA

ePrints

dotAC

DEPLOY

DBLP
(RKB

Explorer)

Course-
ware

CORDIS

CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov

.uk

reference
data.gov

.uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
DB

PBAC

P

Ord-
nance
Survey

Openly
Local

The Open
Library

Open
Cyc

OpenCal
ais

OpenEI

New
York

Times

NTU
Resource

Lists

NDL
subjects

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

The
London
Gazette

LOIUS

lobid
Resources

lobid
Organi-
sations

Linked
MDB

Linked
LCCN

Linked
GeoData

Linked
CT

Linked
Open

Numbers

lingvoj

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Good-
win

Family

Jamendo

iServe

NSZL
Catalog

GovTrack

GESIS

Geo
Species

Geo
Names

Geo
Linked
Data
(es)

GTAA

STITCH
SIDER

Project
Guten-
berg
(FUB)

Medi
Care

Euro-
stat

(FUB)

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

Freebase

flickr
wrappr

Fishes
of Texas

FanHubz

Event-
Media

EUTC
Produc-

tions

Eurostat

EUNIS

ESD
stan-
dards

Popula-
tion (En-
AKTing)

NHS
(EnAKTing)

Mortality
(En-

AKTing)
Energy

(En-
AKTing)

CO2
(En-

AKTing)

education
data.gov

.uk

ECS
South-
ampton

Gem.
Norm-
datei

data
dcs

MySpace
(DBTune)

Music
Brainz

(DBTune)

Magna-
tune

John
Peel
(DB

Tune)

classical
(DB

Tune)

Audio-
scrobbler
(DBTune)

Last.fm
Artists

(DBTune)

DB
Tropes

dbpedia
lite

DBpedia

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Discogs
(Data In-
cubator)

Climbing

Linked Data
for Intervals

Cornetto

Chronic-
ling

America

Chem2
Bio2RDF

biz.
data.

gov.uk

UniSTS

UniRef

Uni
Path-
way

UniParc

Taxo-
nomy UniProt

SGD

Reactome

PubMed

Pub
Chem

PRO-
SITE

ProDom

Pfam PDB

OMIM

OBO

MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Cpd

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Gen
Bank

ChEBI

CAS

Affy-
metrix

BibBase
BBC

Wildlife
Finder

BBC
Program

mes
BBC

Music

rdfabout
US Census

Figure 2.1: Linking Open Data cloud as of September 2010, showing datasets
which have been published adhering to the Linked Data principles. By Richard
Cyganiak and Anja Jentzsch (http://lod-cloud.net/).

2.1.3 Resource Description Framework
The main building block of the Semantic Web is the Resource Description
Framework (RDF). RDF is used to make statements about resources. A single
statement is called a triple and consists of a subject, a predicate and an object.
An example of a triple, originating from the LinkedGeoData dataset, describ-
ing the statement that the construction of the Duomo of Milan was finished in

7

the year 1965 can be found in Figure 2.2. As one can see, the XML Schema
data type integer is used, whereas date would have been the better choice. This
clearly shows the freedom provided by the Semantic Web where each person can
interpret, as long as a range is not specified, such properties as they like.

http://dbpedia.org/
resource/Milan_Cathedral 1965^^xsd:integer

http://dbpedia.org/
property/yearComleted

Figure 2.2: Triple representing the statement that the construction of the
Duomo of Milan was finished in the year 1965.

The subject of a statement is a resource described by a URI or a blank
node. A blank node is used when we want to make statements about something
of which we do not now the exact identity. The predicate defines the relation
between subject and object. On the Web, URLs are used to link sites, without
actually specifying what sort of link it is. Semantic Web predicates are resources
described by URIs and it is therefore possible to indicate the nature of the
relation between subject and object. The object can be either a resource, blank
node or a literal. Literals are atomic values, represented by a string. The sort
of data type represented by the string can be defined using schemes, were XML
Schema is the most widely used scheme.

There are multiple ways of representing RDF in textual form. RDF is, in the
first place, designed to be readable for machines. This resulted in the RDF/XML
serialization. RDF/XML uses XML to represent the triples, but is hard to read
for humans. N-Triples represents triples in a more natural way, with the URI
representations in subject, predicate, object order and ending with a full stop.
The Terse RDF Triple Language (Turtle) is a superset of N-Triples, which uses
abbreviations to make the RDF more readable for humans. Notation3 (N3), a
superset of Turtle language, is further optimized in order to be a human readable
language for data on the web.

2.1.4 RDF Schema & The Web Ontology Language
RDF Schema (RDFS) extends RDF with a minimal ontlogy representation lan-
guage. RDFS has the expressivity to describe classes, subClasses and properties
of classes [1]. A class hierarchy can be created using the attribute subClassOf.
There is a similar attribute for properties: subPropertyOf. For properties the
domain and range can also be set.

The need for more expressiveness in ontologies resulted in OWL, the Web
Ontology Language [40]. OWL utilizes the RDF and RDFS structure and
adds more options to describe properties and classes, such as relations between
classes, cardinality, equality, richer typing of properties and characteristics of
properties.

8

2.2 Large Knowledge Collider
This section is used to describe the Large Knowledge Collider platform (LarKC).
In Section 2.2.1 we give a general introduction of the ideas behind LarKC and
its architecture. LarKC plug-ins, which are the building blocks of LarKC, are
discussed in Section 2.2.2. Workflows putting these building blocks together are
described in Section 2.2.3.

2.2.1 LarKC Architecture
The Large Knowledge Collider (LarKC) is a platform aiming to enable massive
distributed reasoning, using a combination of techniques from different research
fields such as information retrieval, data mining and cognitive psychology. The
platform enables developers to use small linked building blocks to achieve the
desired functionality [6]. The algorithm shown in Figure 2.3 shows the original
idea of the main loop used by the LarKC platform [20].

1: loop
2: obtain a selection of data (RETRIEVAL)
3: transform to an appropriate representation (ABSTRACTION)
4: draw a sample (SELECTION)
5: reason on the sample (REASONING)
6: if more time is available and/or
7: the result is not good enough (DECIDING) then
8: increase the sample size (RETRIEVAL)
9: else

10: exit
11: end if
12: end loop

Figure 2.3: The algorithm illustrating the initial idea of LarKC.

Over time it became apparent that this algorithm was too rigid for some of
the use cases [5]. To provide developers with more flexible approaches, the
decider plug-in got more control over the overall process, instead of only deciding
whether the process should stop. Also the possibility of the creating complex
workflows was added, which we will discuss in more depth in Section 2.2.3. A
diagram originating from [5], describing the current architecture of LarKC can
be found in Figure 2.4. The architecture has three domains: a platform domain,
an infrastructure domain and a user domain.

The platform domain is a core part of the architecture. The LarKC runtime
environment enables the initialization and invocation of the workflows and their
plug-ins, through the use of an executor. The executor loads a workflow descrip-
tion, picks the appropriate plug-ins from the plug-in registry and executes the
workflow. Executors can have endpoints, which enable communication with
users through queries. The management interface allows users to submit their

9

workflows to the platform. The platform also manages the LarKC data layer
in which the data is stored. The data layer is also used to enable commutation
from one plug-in to the other using SetOfStatemens objects.

Figure 2.4: The high-level view of the LarKC architecture.

Two elements of the platform enable the correct execution of the plug-ins.
The plug-in registry is used to manage the available plug-ins, so they can be
retrieved whenever they are needed for the execution of a workflow. The plug-in
manager manages the execution of the plug-in itself and enables the possibility
of remote execution.

The infrastructure domain comprises elements supporting workflows run-
ning on the LarKC platform. LarKC’s design is aimed to enable distributed
computing, so when more computing resources are needed, it can be chosen to
outsource some tasks to external systems, such as a web server or even a super
computer. Triple stores can be used to externally store information. The mon-
itoring infrastructure is added to be able to test the functioning of the LarKC
elements.

Within the user domain, three distinct categories of users can be identi-
fied. The end-users, which are people who will use the applications running on
LarKC. The workflow designers, which are developers constructing applications

10

by putting already existing plug-ins together using a workflow. The plug-in
developers will design and create plug-ins as described in Section 2.2.2. In the
following subsection we will elaborate more on two aspects of the user domain:
workflows and plug-ins.

2.2.2 LarKC Plug-ins
The building blocks of a LarKC application are called plug-ins and can be
reused or created from scratch. An on-line marketplace1 containing the currently
available plug-ins, can be used by developers to find plug-ins available for reuse.
Tools, such as a wizard for the Eclipse development environment, are available
to aid the process of plug-in creation.

The plug-ins utilized by the LarKC platform are mapped to the concepts
introduced in the algorithm depicted in Figure 2.3. Although, each plug-in
is essentially the same, there are some conceptual differences. Below, we will
shortly discuss the different intended functions the plug-ins can have.

Retrieval
A plug-in that does retrieval of data takes a query as input and identifies SetOf-
Statement objects relevant to answering this query. In an urban computing
scenario this could for example entail finding points of interest using DBpe-
dia documents and instead of taking the complete database into account, only
pointers to relevant documents are passed along to the next plug-in.

Abstraction
An abstraction plug-in can be used for two different tasks. The first task is the
transformation of queries. When a query committed by a user is not appropriate
for a given data source or reasoner plug-in, it can be altered so it matches
the restrictions. Another option concerning queries is to construct multiple
alternative queries from the original query.

The second type of abstraction plug-in is used to transform one data struc-
ture into another. A good example is converting structured info obtained
through an API (usually provided in XML) into XML/RDF.

Selection
A selection plug-in is used for selecting appropriate parts of provided SetOfS-
tatements objects, using a predefined strategy. A simple example is the Grow-
ingDataSetSelecter, which initially selects a small part of the data and keeps
expanding it over time, whenever there is more data available.

Reasoning
A reasoning plug-in is used to execute a SPARQL query against the data. The
output of a reasoning plug-in depends on the reasoning task, in case of a select
query, variable bindings containing the variables specified in the query are re-
turned. If the SPARQL query is a construct or describe query, an RDF graph

1LarKC Plug-In marketplace http://www.larkc.eu/plug-in-marketplace/

11

http://www.larkc.eu/plug-in-marketplace/

is returned. In case of an ask query, a Boolean Information Set is returned
indicating whether the pattern could be found in the SetOfStatements.

Deciding
As discussed before, a decider plug-in is generally used to influence the workflow
process. A decider plug-in can be used to determine whether there are enough
results obtained and whether they are of sufficient quality. If this is not the
case, the plug-in can interfere.

2.2.3 LarKC Workflows
Workflows are used within LarKC to create a sequence of plug-ins. An example
of such a sequence is the event pipeline used within the Alpha Urban LarKC
application [47] [48]. This pipeline is graphically depicted in Figure 2.5. A work-
flow is described using RDF/XML or Notation3, using a specified vocabulary.
The Notation3 representation of the event workflow can be found in Figure 2.6.
Using the workflow description, the endpoint can be specified and it is possible
to pass parameters from one plug-in to another.

SparqlToCityQuery
Transformer

event pipeline

EventIdentifier XML2RDF
Transformer

GrowingDataSet
Selecter

SparqlQuery
EvaluationReasoner

Figure 2.5: Graphical representation of the event pipeline workflow.

The event pipeline is used to retrieve events for a certain city, which is
specified in a SPARQL query. The events are retrieved from the Eventful web-
service2 and because Eventful only accepts queries which are conform their
specifications, the SPARQL query needs to be transformed. This is done by the
SparqlToCityQueryTransformer. Next, the EventIdentifier is used to find the
appropriate event data and stores a pointer for each found event. Since Eventful
outputs its data in the XML format and our reasoner requires RDF data, the
XML2RDFTransformer is needed to transform the results into the RDF format.
Because the transformer only receives pointers, the XML data for the separate
events have to be collected. The GrowingDataSetSelecter is used to select data
for the SparqlQueryEvaluationReasoner.

Many of the plug-ins used in the event pipeline are generic, they can also
be used in other workflows. This is one of the strong points of the LarKC

2http://eventful.com/

12

http://eventful.com/

platform. When many people contribute generic plug-ins, some of the tasks
will be as simple as writing a workflow, which will be able to accomplish its
functionality using already existing plug-ins. The ease of changing the plug-ins
within a workflow will also aid in testing different setups, using different plug-ins
for the same task and testing which ones are better suited for the job.

1: @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2: @prefix larkc: <http://larkc.eu/schema#> .
3: @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4:
5: # Define plug-ins
6: _:SparqlToCityQueryTransformer a
7: <urn:eu.larkc.plugin.urbancomputing.SparqlToCityQueryTransformer> .
8: _:EventIdentifier a
9: <urn:eu.larkc.plugin.urbancomputing.EventIdentifier> .

10: _:XML2RDFTransformer a
11: <urn:eu.larkc.plugin.urbancomputing.XML2RDFTransformer> .
12: _:GrowingDataSetSelecter a
13: <urn:eu.larkc.plugin.GrowingDataSetSelecter> .
14: _:SparqlQueryEvaluationReasoner a
15: <urn:eu.larkc.plugin.SparqlQueryEvaluationReasoner> .
16:
17: # Connect the plug-ins
18: _:SparqlToCityQueryTransformer larkc:connectsTo _:EventIdentifier .
19: _:EventIdentifier larkc:connectsTo _:XML2RDFTransformer .
20: _:XML2RDFTransformer larkc:connectsTo _:GrowingDataSetSelecter .
21: _:GrowingDataSetSelecter larkc:connectsTo
22: _:SparqlQueryEvaluationReasoner .
23:
24: # Define a path to set the input and output of the workflow
25: _:path a larkc:Path .
26: _:path larkc:hasInput _:SparqlToCityQueryTransformer .
27: _:path larkc:hasOutput _:SparqlQueryEvaluationReasoner .
28:
29: # Connect an endpoint to the path
30: <urn:myQueryendpoint> a <urn:eu.larkc.endpoint.sparql> .
31: <urn:myQueryendpoint> larkc:links _:path .

Figure 2.6: The workflow description of the event pipeline of the Urban Alpha
LarKC application, written in Notation3.

2.3 Traveling Salesman Problem
In this section, we discuss the well-known Traveling Salesman Problem. We
introduce the problem and its history in Section 2.3.1. In Section 2.3.2 we

13

discuss a more constrained version that takes time constraints into account: the
Traveling Salesman Problem with Time Windows. In Section 2.3.3 we conclude
by introducing another constrained version, where the costs of traveling changes
over time. This is the so-called Time Dependent Traveling Salesman Problem.

2.3.1 Generic Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is one of the most studied combinatorial
problems. The TSP problem is a NP-hard problem and can be formulated as
following: “Given a set of cities along with the cost of travel between each pair
of them, the traveling salesman problem, is to find the cheapest way of visiting
all the cities and returning to the starting point. The ‘way of visiting all the
cities’ is simply the order in which the cities are visited; the ordering is called a
tour or circuit through the cities” [3]. An example can be seen in Figure 2.7.

(a) TSP input (b) TSP output

Figure 2.7: A generic TSP example, where the figure on the left represents the
input and the figure on the right the optimal solution.

The first notion of the TSP originates from the year 1832 in the book “Der
Handlungsreisend – wie er sein soll und was er zu thun hat, um Aufträge zu
erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein – Von
einem alten Commis-Voyageur”, which described the explicit need for good tours
for business men that were traveling around, in order to save time and resources.
The term “traveling salesman problem” has emerged somewhere during the 1930s
or 1940s, most likely at Princeton, and has been a widely used term since the
1950s [3].

Over time many solutions to the TSP have been proposed, making it one of
the most studied problems in the fields of operational research and theoretical
computer science. Also, researchers from related fields have shown interest in the
problem. Examples are solutions that are based on evolutionary computing [22]
and ant colony optimization [18].

We can conclude that the traveling salesman problem is a famous example
of a well explored problem that has fascinated researchers for several decades,
or even centuries.

14

2.3.2 Traveling Salesman Problem With Time Windows
The Traveling Salesman Problem with Time Windows (TSPTW) can be formu-
lated as following: “the traveling salesman problem with time windows is the
problem of finding a minimum-cost path visiting a set of cities exactly once,
where each city must be visited within a specific time window” [21]. This prob-
lem statement is similar to the one of the regular TSP, with time windows as
an addition.

A good TSPTW solver could be very useful when solving planning prob-
lems that have time related constraints. For example a parcel delivery company
could use it to schedule the routes, where the nodes are customers which have
to receive their parcel within a certain time window. The introduction of time
windows makes this problem much harder to solve, since there are far less so-
lutions than with the regular TSP problem. As with the regular TSP, exact
algorithms as well as heuristic approaches can be found in the literature. We
start by discussing some exact solutions that guarantee an optimal solution.

In [33], Langevin et al. introduce a two-commodity flow formulation that
can be extended to the makespan problem. Dumas et al. use a dynamic pro-
gramming approach in order to take advantage of the time window constraints
to significantly reduce the state space and the number of state transitions [19].
Focacci et al. propose a hybrid approach for solving the TSPTW that merges
constraint programming propagation algorithms and operational research tech-
niques for coping with the optimization perspective [21]. Similarly, Pesant
et al. propose a branch-and-bound solution using a constraint programming
model [41].

Due to the limitations of the exact approaches in finding an optimal solution
within a reasonable amount of time, the need for effective heuristics arises. A
number of heuristic approaches have been proposed, some more successful than
others. We discuss some of the most notable solutions in short and discuss one
solution more extensively, which is the fastest solution up until now.

In 1997 Carlton and Barnes used a tabu search approach with penalty func-
tions that also considered infeasible solutions [15]. In 1998 Gendreau et al.
proposed a solution that gradually builds the route and once a feasible route
is found, improves it with local optimizations [24]. In the year 2000, Calvo
introduced an ad hoc objective function to obtain a solution close enough to a
feasible solution of the original problem [14]. Given this solution, all the sub-
tours are inserted into the main path using a greedy insertion procedure. More
recently in 2007, Ohlmann and Thomas obtained very good results by using a
variant of simulated annealing incorporating a variable penalty method [39].

The fastest solution currently known is proposed in [17] by da Silva and
Urrutia. This paper proposes a two phase heuristic, where the first phase is a
constructive phase that constructs a feasible solution using a variable neighbor-
hood search (VNS) solution. The second phase is an optimization phase that
optimizes the solution using a general VNS (GVNS) solution.

Since the proposed solution is a heuristic search, there is no guarantee that
the optimal solution is found. However, from the results in the paper we can

15

conclude that the solutions that are found are generally very good and, in a
number of cases, even optimal. More important is the computation time. While
the results are slightly better than the, up until then, fastest compressed an-
nealing method [39], the computation time is reduced by 77.68%. Up until now
there has been no solution that outperforms the GVNS solution in the area of
computation time.

2.3.3 Time Dependent Traveling Salesman Problem
The Time Dependent Traveling Salesman Problem (TDTSP) is generally stated
as follows: “The time dependent traveling salesman problem can be seen as a
generalized version of the classical traveling salesman problem where arc costs
are dependent of their position in the tour” [25]. One can look at this as a regular
traveling salesman problem in which the costs of traveling between nodes may
vary over time.

Where the researchers on the subject of the TSPTW problem generally agree
with each other on the formulation of the problem, this lies entirely different
with the TDTSP. The time dependent traveling salesman problem was first
formulated by Fox in 1973 [23], who illustrates it with examples from the brewing
industry. The research of Picard and Queyranne [42] can be seen as the first
major breakthrough in this field, they present the first effective method that is
able to solve TDTSP problems of up to 20 nodes. Based on a formulation of a
quadratic assignment model in [42], Gouveia and Voss modified the formulation
and presented several, in their eyes, better and more concise formulations of the
TDTSP. In [10] Bigras et al. investigate and evaluate various earlier proposed
formulations of the TDTSP using a branch and bound algorithm.

Overall we can state that research performed in the field of the TSPTW
is generally focused on the algorithmic solution, whereas performance improve-
ments in the field of the TDTSP are reached through alterations in the formu-
lation of the problem.

2.4 OpenStreetMap.org & LinkedGeoData.org
In this section we will discuss two closely related projects, OpenStreetMap.org
and LinkedGeoData.org. OpenStreetMap is a project aiming to map the world
with the use of user contributions. LinkedGeoData is a project using the data
gathered by OpenStreetMap and transforms it into RDF. This makes it a valu-
able geographic data source for the Semantic Web.

2.4.1 OpenStreetMap.org
The aim of the OpenStreetMap project (OSM) is “to create a set of map data
that is free to use, editable and licensed under new copyright schemes” [28].
The project has many aspects in common with Wikipedia. The content is user
generated, user maintained and code for exploiting and editing the gathered

16

data is written by members of the community. A drawback of the openness of
the OSM project is the lack of quality control.

The main website of OSM, as depicted in Figure 2.8, offers users a “slippy
map”, much like Google Maps, which can be used to browse the available geo-
graphical data. The export tab of the site provides users with the option to ex-
port information to a multitude of file formats. Other tabs provide information
about added GPS traces, the changelog of the depicted area, user experiences
in the form of user diaries and an editing tab which allows registered users to
edit information.

Figure 2.8: The website of the OpenStreetMap project.

One of the most important features of the OSM project is the ease of edit-
ing. Users can use the Flash-based Potlatch editor, or the more advanced Java
OpenStreetMap Editor, to add, change or remove data. These editors enable
users to upload detailed GPS information gathered using mobile GPS devices,
with which the road networks are traced. Other sources used for enriching the
data originate from publicly available data sources, such as the TIGER data
in the U.S., or areal imagery, which is for example provided by Yahoo. Unlike
Wikipedia, OSM only allows registered users to add information to the maps.

The underlying database is implemented in PostgreSQL. The geographical
entities are stored as points, which are called nodes within the OSM community.
Linear features of maps are called ways and are defined by a list of ordered
nodes. Relations are used to group multiple nodes or ways together. Key-value

17

pairs can be added to each nodes, which can be used to annotate points of
interest, for example type=bar. These pairs are called tags and are part of
an extensive taxonomy, which is under continuous development by the OSM
community. Table 2.1 shows information about the data statistics of the OSM
project.

Category Amount
Number of users 440.630
Number of uploaded GPS points 2.446.895.811
Number of nodes 1.157.997.265
Number of ways 102.564.798
Number of relations 1.061.454

Table 2.1: OpenStreetMap statistics as of July 2011

The map provided on the OSM website is not the only way to access the
data. An Editing API is provided which can be used to fetch and save data
from/to the OSM database. Every week a complete dump of the data is put
on-line. The information is structured using a XML format and made available
through a Bzip2 compressed file, with a current size of 17.1 GB.

2.4.2 LinkedGeoData.org
For the Semantic Web to function as a place for data integration, it needs large
vocabularies to link data and information to, such as the DBpedia project.
The LinkedGeoData (LGD) project aims to be the geographical counterpart
of DBPedia, providing a dataset consisting of geographical data in the RDF
format. The goal of the project is “to contribute rich, open, and integrated
geographical data to the Semantic Web using OpenStreetMap as its base” [46].
The overall architecture of the system used by LGD can be found in Figure 2.9.

The data gathered by the OSM project serves as a basis for the LGD project.
This data is transformed into RDF using the LGD Dump Module. This mod-
ule utilises Java classes and XML snippets in order to convert the tags used
within the OSM dataset into RDF. URIs for nodes and ways are represented
by lgd:node<id> and lgd:way<id>. In order to be able to easily acquire the
most appropriate type of a data instance, the property lgdo:directType is
added.

The interlinking of knowledge bases is a key concept of publishing Linked
Data. The central interlinking hub is DBPedia and the first aim of the LGD
project is to link LGD instances to DBpedia instances using the owl:sameAs
relationship [7]. The matching is accomplished using three criteria: type infor-
mation, spatial distance and name similarity. Precision is preferred over recall,
because of the far reaching consequences of a wrongly assigned owl:sameAs re-
lation. In a new release of LGD, links were made to the GeoNames and Food
and Agriculture Organization of the United Nations datasets.

18

OpenStreetMap.org

Full Dumps

Changeset

LGD Dump Module LGD LiveSync Module Osmosis

File System

Downloads

Virtuoso

SPARQL (Static)

Virtuoso

SPARQL (Live)

Postgis

REST

Vicibit LGD Browser

Data Source

Data Processors

Storage

Public Interfaces

Applications

Figure 2.9: Overview of LinkedGeoData’s architecture.

The converted data is uploaded to a file server, making it accessible for
downloading. The data is also loaded onto a Virtuoso triple store, which makes
it available for SPARQL querying, for applications such as Vicibit and the LGD
Browser. A live and a static SPARQL endpoint are provided. The static one
uses the full dumps of the OSM dataset, whereas the live one also incorporates
the latest changesets. A REST service is also provided by the LGD project,
which uses both the full dump and the changesets.

2.5 Electronic Guides
Electronic guides are applications running on computers or mobile devices, that
can be consulted for travel information. While attempts are made to replace
traditional guide books with electronic applications, the traditional guide books
are still very popular. However, exact numbers cannot be given, because the
sales figures of companies such as Rough Guide and Lonely Planet are not
publicly available.

Most travelers trust and rely on the content of traditional guidebooks. A
reason for preferring guidebooks over electronic guides might be the perceived
quality of information. Most Guidebooks are edited with care, but will the
information provided by their electronic counterpart be of the same quality?
Another reason might be the need for an Internet connection, used by the ap-
plications to retrieve information. Due to high costs of data roaming, this can
be very expensive for tourists who are traveling abroad.

While we do not have the exact ratio between the use of traditional guide-
books and electronic guides at our disposal, we can state with certainty that a

19

lot of headway can be made in the area of electronic guides. In order to gain a
better perspective on the current state of the art concerning electronic guides,
we take a look at two of the most important applications in this area. In Section
2.5.1 we discuss the web-service TripAdvisor and in Section 2.5.2 we discuss the
mobile applications of Rough Guide and Lonely Planet.

2.5.1 TripAdvisor
On the about-us section ot the TripAdvisor website3 the following is stated:

“TripAdvisor is the world’s largest travel site, enabling travelers to
plan and have the perfect trip. TripAdvisor offers trusted advice
from real travelers and a wide variety of travel choices and planning
features (including Flights search, TripAdvisor Mobile and TripAd-
visor Trip Friends) with seamless links to booking tools”.

TripAdvisor presents itself as a website that tourists can use to plan their jour-
neys. The provided information is mainly based on user generated content. This
has also been confirmed by Miguéns et al. [37] in 2008, where a case study is
presented in which the TripAdvisor data of Lisbon is analyzed. By examining
the data that is available for this city, they come to the conclusion that the
website is mainly used for the rating of hotels.

Besides the large number of hotels that can be found, Miguéns et al. also
noticed that there were lots of restaurants and bars present and reviewed on
the site. Information about other categories such as museums, monuments etc.
was more scarce and of less quality. The article was published in 2008 and a lot
has been changed since then. Therefore, we take a look ourselves and perform
a small case study considering the city of Milan.

Figure 2.10: Part of the website of TripAdvisor.

3http://www.tripadvisor.com/pages/about_us.html

20

http://www.tripadvisor.com/pages/about_us.html

On the TripAdvsior homepage, as can be seen in Figure 2.10, a menu can
be found that can be used to start searching, after one has selected a category.
There are 3 categories that are interesting for us: hotels, restaurants and things
to do. We start by taking a look at the hotel search, resulting in 434 found
hotels, where most of the hotels have over 100 reviews. This is an impressive
result, for a medium sized city such as Milan.

The number of 1507 returned restaurants is also impressive, but what really
stands out is the amount of detail of the information provided by the results.
One can make a selection based on cuisine, neighborhood, scene and price range.

When looking at the amount of attractions returned for the city of Milan,
we can conclude that this feature has improved since 2008. As far as we can see,
all the major touristic attractions, such as the Duomo and the Galleria Vittorio
Emanuele, are present. The total amount of attractions found adds up to 222.

From our small case study it can be concluded that the TripAdvisor site
hosts a lot of high quality travel information, which is primarily maintained by
a dedicated group of users.

2.5.2 Lonely Planet & Rough Guide City Apps
The Lonely Planet4 and Rough Guide5 companies have released similar apps
that are able to guide tourists through cities. Both apps are mobile applications
that can be used in combination with mobile devices running iOS or Android.
The information in guide books such as the Lonely Planet books and the Rough
Guide books is often of high quality, due to the fact that it is written by pro-
fessional reporters. Incorporating this information into mobile apps has several
advantages.

First of all, tourists do not have to carry a heavy guide book with them
all the time, but instead only have to bring a smartphone or a tablet device,
such as the iPad. Another advantage is that the travel information is stored on
the device, so that there is no need for an Internet connection. For each city
a separate app has to be released. Rough Guide currently released apps for 6
cities, while Lonely Planet has released apps for over 100 cities.

The main feature of both apps is a map showing all the major sights in
the neighborhood of the tourist’s current position (determined using GPS). The
sights are divided into several categories ranging from attractions to restaurants.
A feature that is only available in the Rough Guide apps is the ability to suggest
things to do for indecisive users. Traditional guide books lack the possibility of
implementing this feature. Another feature is the possibility for creating lists
of POIs, which one wants to visit.

Overall we can say that both the city apps are interesting for tourists. They
have an added value with respect to traditional guidebooks by doing things
such as showing ones current location using GPS and suggesting places where
the user could go next.

4http://www.lonelyplanet.com/mobile/
5http://www.roughguides.com/apps/cities/

21

http://www.lonelyplanet.com/mobile/
http://www.roughguides.com/apps/cities/

2.6 Automated City Trip Planners
In the last decade, a range of applications have been developed supporting
tourists in their decision making. An overview of systems that compose tours
of POIs to visit, is presented in [45]. Souffriau et al. conclude their overview
article with the following sentence: “Providing adequate tour scheduling support
for tourist decision support applications is a daunting task for the application
developer”. Developers take different approaches to solve the problem. In this
section we will discuss the most influental ones.

The Dynamic Tour Guide by ten Hage et al. is the first mobile agent able
to compute tours of POIs on the fly [27]. It uses Tour Building Blocks (TBB)
to compose appropriate sequences of POIs. The TBBs are structured using an
ontology and are matched with the user preferences. Search iterations using a
directed depth first algorithm are performed for five seconds, after which the
best tour is presented to the tourist. One of the stated benefits of the automated
tour guide is the possibility of achieving a higher dispersion of tourists over the
attractions.

P-Tour, a personal navigation system for tourists is introduced in [36]. A
destination list is used to offer tourists the possibility of selecting interesting
POIs or they can choose to add destinations themselves, through the input of
latitude and longitude values. Users need to assign importance degrees and time
windows to POIs. This information is used to pick an appropriate number of
POIs and generate a route using a variant of the TSP. The algorithm is able to
generate solutions within 5 seconds, for a dataset of 30 POIs.

An extension of the P-Tour system is developed by Kinoshita et al. enabling
multiple day tours, through partitioning of the dataset [32]. Wu et al. extend
the P-Tour system in such a way that it takes the weather forecast into account
[51]. The ratings of the POIs are dependent on whether it is fine, cloudy or rainy
weather. Nagata et al. add functionality to handle the sometimes conflicting
interests of group members on a sightseeing trip, using a Genetic Algorithm-
based algorithm [38].

A multi-agent ontological recommendation application for the city Tainan in
Taiwan, is developed by Lee et al. [34]. This system includes a context decision
agent and a travel route recommendation agent. The first agent uses fuzzy
inference mechanisms to match the requirements of the tourist to the developed
ontology, resulting in eight selected POIs. The second agent retrieves contextual
information, generates a route using a TSP algorithm and plots this on a Google
map instance.

As opposed to the earlier mentioned applications, which make a distinction
between the selection of POIs and generating a route between them, Vansteenwe-
gen et al. advocate an integrated approach, using a Team Orienteering Problem
with Time Windows algorithm (TOPTW). “In the TOPTW, a set of locations
is given, each with a score, a service time and a time window. The goal is to
maximise the sum of the collected scores by a fixed number of routes. The routes
allow to visit locations at the right time and they are limited in length.” [50]
Trips consisting of multiple days are made possible by generating multiple tours,

22

visiting different POIs (the Team part of TOPTW).
A web application utilizing this TOPTW algorithm is implemented for five

cities in Flanders, Belgium6. The dataset consists of POIs selected by the local
tourist offices and contain at most 216 POIs. POI descriptions are provided in
English and Dutch. Usage statistic were collected and in two months 17.510
unique visitors visited the site, generating 20.395 trips. The collected user
feedback was positive.

The city trip planner we develop is more similar to the city trip planners
that have separate components for selecting POIs and route generation than
to the all in one solution by Vansteenwegen et al. Despite the similarities in
architecture, there are areas in which our application differs from the described
automated city trip planners. In the following paragraphs, we compare the
current state of the art with our application.

As most applications, the selection of POIs is separated from the routing al-
gorithm. The POI selection is, first and foremost, based on the user preferences,
but when the overall time window allows it, our application will add additional
POIs to the plan that are not specified by the user. For the routing component,
a TSPTW algorithm taking the time constraints of POIs into account is used.

The main point on which we distinguish ourselves, is the data we use. As
opposed to the above solutions, that all use closed datasets, we have much more
data at our disposal by using Semantic Web resources. Also, because of the
earlier mentioned Linked Open Data cloud, we can provide tourists with rich
semantics by using the links that exist between the different Semantic Web data
sources, in order to retrieve more information.

The number of POIs resulting from these Semantic Web sources is consid-
erably larger than the datasets used by the other applications. This makes the
process of finding appropriate sets of POIs in combination with determining
good routes much harder. This results in the need for good selection strategies,
whereas other applications can just generate all the possible solutions and pick
the best one.

We use the Semantic Web platform LarKC to achieve the overall function-
ality, which has the advantage that the components of the application can be
easily interchanged. When we decide to use a different point selection strategy
or TSP solver, this can easily be achieved by creating the corresponding plug-in
and incorporating it in the LarKC workflow. In the future, the platform will
also simplify the integration of additional data sources.

Similar to the Dynamic Tour Guide by Ten Hage et al., we also develop an
ontology, but instead of using the concept tour building blocks, we use POIs.
We assign the different kinds of POIs to classes and subclasses in order to create
a useful hierarchy.

6http://www.citytripplanner.com/

23

http://www.citytripplanner.com/

Chapter 3

Problem Setting

In this chapter we introduce the problem by providing the reader with an illus-
trative scenario of the use of the application in Section 3.1. User requirements
following from this scenario are given in Section 3.2. A formal description of
the problem space can be found in Section 3.3.

3.1 Scenario
In this section a scenario is given, which will illustrate the future use of the city
trip planner application. In the consecutive chapters we will use this scenario to
clarify the theory and strategies. The general process of using the system (and
thus of any scenario) can be found in Figure 3.1.

A tourist is visiting Milan for the first time in his life. After a demanding
flight with EasyJet (it is cheap, but you can not count on them being in time
at your destination), he has barely enough energy to get to his hotel. Using a
scrap of paper with the appropriate public transport lines, he manages to get
near his destination. Using the Google maps app on his phone he decides on
which way to go. Finally arrived at the hotel, he has not got the energy to go
into town and goes straight to bed.

A little overslept the tourist gets out of bed at 11 o’clock in the morning.
Unable to get breakfast in the hotel, he grabs something to eat in the cafe
opposite the hotel. Two days left in the inspiring city, so much to do, so much
to see. But were to go first? Instead of spending the rest of the morning planning
a way through the city, he opens an app on his phone while nourishing the great
taste of Italian coffee in the bar next to the hotel. The app will generate a route
through the city, visiting some of the most beautiful sites.

He has got multiple options of how to proceed. The simplest is to just let
the application create a generic route, using the centre of the city as a starting
point. Another option is to choose the start point himself, traversing multiple
categories like museums, hotels and monuments until he finds the starting point
he likes. He chooses the third option though, just selecting the point on a

24

displayed map. He selects the central square of the city, Piazza del Duomo.

Indicate Start And End Point

Select Points Of Interest To Visit

Select Classes Of Points Of Interest To Visit/Avoid

[Prefers to visit
specified points of interest]

[Does not prefer to
indicate which specific

points of interest to visit]

[Prefers to visit/avoid
specified classes of points of interest][Does not prefer to

indicate which classes
of points of interest to

visit/avoid]

Indicate Start And End Time

Choose Route

Figure 3.1: UML Activity Diagram describing the use of the system.

From a list of the main points of interest he selects the Vittorio Emanuele
monument, who was the first king of united Italy. He also adds the category
Church to his preferences. When you visit the country that is home to the
Roman Catholic Church, you should at least visit some of the beautiful churches
right? He also adds the preference to have dinner at some point in time, but no
fast food.

Indicating that he wants the planning to start at 2 p.m. and eventually
return around 12 p.m. at the same point he starts from, the app indicates it
is calculating routes. Within a minute it displays three routes. All of them
include multiple alternative POIs in addition to the ones he selected. Dinner is
also planned!

He chooses the first route and a graphical representation of a route is pre-
sented by the app, displaying all the sights he is about to visit. The sights all
have a rating and it appears that only the ones with a high rating are selected.
The application changes to map view, which displays a map with a route pro-
jected on it. He finally manages to swallow the last bit of croissant and sets out
to visit the first POI.

25

3.2 User Requirements
Below we provide a list with the requirements that the application will have to
fulfill in order to be able to accomplish the results described in the scenario of
Section 3.1.

• The user can select one or more specific POIs to include in the trip.

• The user can select one or more categories of POIs to include in the trip.

• The user can select one or more categories of POIs to exclude from the
trip.

• The system must propose a trip that satisfies the users request.

• The system may add additional POIs to fill up the remaining time.

3.3 Problem Formalization
This section will describe the conceptual framework. It starts with the intro-
duction of a plan for a city trip and the main concepts to realise such a plan.
Equations used to evaluate the found plans are given next.

Let G be the graph containing POIs and edges between these POIs, where
the edges represent travel distance. UI, UC and NUC are sets containing user
preferences where tstartplan and tendplan indicate the start and end time of the
plan. P is an ordered list of POIs defining a plan for a city trip. The process of
finding a suitable plan can be formulated as a function F (Equation 3.1).

F (G,UI,UC,NUC, tstartplan , tendplan)→ P (3.1)

Graph G is defined as G = (S, E), where S = {POI1 . . . POIn} is the set
of all POIs contained in the problem space, and E = {(i, j) : i, j ∈ S ∪
{POIstart, POIend}, i 6= j} represents the edges between the POIs. POIstart is
the starting point of the planning and POIend the end point. Both points are
retrieved from the user input. Let ti,j be the travel time from i to j in seconds.
The graph G of Milan could, for example, have POIs Duomo, LaScala ∈ S.
Traveling from La Scala to the Duomo takes 6 minutes, so tduomo,laScala = 360.

Each POIi ∈ S is described using a tuple < ri, [ai, bi], di, Cj >. A POI has
an associated rating r ∈ [0, 1] that describes the relevance of the POI. A time
window specific for a POIi is defined by [ai, bi], where ai is the start time and
bi is the end time. The time window sets the period of time in which the POI is
relevant to a user. Each POIi has a nominal average duration di, which is the
time in minutes a tourist will probably spend at the sight. Each POIi is also a
direct instance of a class Cj . The classes are disjoint, which means that a POI
can only be a direct instance of exactly one class.

An example of a POI is the Duomo of Milan. It is one of the major visitor
attractions of Milan, so it has a rating of 0.87. A tourist can enter the Duomo

26

from 7:00 to 18:45, which corresponds to the aduomo and bduomo value. A tourist
will probably spend around one hour at the Duomo, which results in a dduomo

of 60 minutes. The Duomo is an instance of the church class.
There are three sets of user preferences which our trip planner needs to fulfill,

UI, UC andNUC. UI = {POI1, . . . , POIk} represents the instance preferences.
This set is used to give the user the option to indicate specific POIs that he/she
will definitely visit. Examples are the Duomo in Milan or the Colosseum in
Rome. UC = {(C1, X1), . . . , (Cm, Xm)} represents the class preferences. Ci

represents the class and Xi the amount of times a tourist likes to visit POIs
categorized with Ci. This way a user can for example indicate the need to visit
three pubs, UC = {(Pub, 3)}, without actually selecting the specific instances.
NUC = {C1, . . . , Cp} represents the non preferred classes. With the help of this
set a user can specify which classes he or she definitely would not like to visit.

The POIs in UI do not affect the set UC, this implies that when a user
indicates to appreciate visiting a class Ci and also adds a POIj to UI, which is
an instance of this class, this will not effect Xi.

Furthermore, all the user preferences should be fulfilled, so only solutions
adhering to the inclusion of a number of instances of Ci equal to Xi+ |{POIj ∈
UI} ∩ {POIj instance of Cm}| are valid solutions.

We define a plan as P = (< POI1, t
start1 , tend1 >,< POI2, t

start2 , tend2 >
,< POIl, t

startl , tendl >) of length l that satisfies the following constraints:

For plan P : For each POI < ri, [ai, bi], di, Cj >
tstarti ≥ ai tstart1 > tstartplan

tendi ≤ bi tendl < tendplan

tendi − tstarti <= di

The start and end time of a plan, tstartplan and tendplan , are specified by the
user, who, for example, can start the planning at 2 in the afternoon and end it
at 12 in the evening.

An implication of the estimated duration di of points is that there will be a
lower and upper bound to the number of points that can be visited in the time
interval between tstartplan and tendplan . This can be seen in Equation 3.2.

tendplan − tstartplan

Maximum(di)
≤ l ≤ tendplan − tstartplan

Minimum(di)
(3.2)

Multiple plans which satisfy all constraints are normally expected. Only the
best solutions should be presented to the user. In order to determine which
plans are good and which plans are not, we rank the plans using two metrics.
One that judges the quality of the POIs that are incorporated in the selection
and one that judges the travel time of the route. In equation 3.6 we define
the quality of the selected POIs as a summation of the score of each separate
POI, divided by the total time interval between tstartplan and tendplan . The POI
score described by Equation 3.3, is influenced by the way it matches the user
preferences, the general relevancy of the POI (the rating r) and its service time

27

d. The different types of POI matching are illustrated in Figure 3.2. When
dealing with instance preferences, there is the possibility of a perfect match or
a non-match and when dealing with class preferences, we have the possibility of
a perfect match, subsume match and non-match/plugin match (Equation 3.4).
The score of POIi can then be calculated as following:

POIScore(POIi) = ri · di ·matchScore (3.3)

matchScore =

 1 if perfect match
0.66 if subsume match
0.33 if non-match or plugin match

(3.4)

ServiceT ime(P) =

n∑
i=1

di (3.5)

Score(P) =

∑n
i=1 POIScore(POIi)

tendplan − tstartplan
(3.6)

In the case of a non-match or a plugin match, the POIs are still multiplied
by 0.33. We choose to do this, because this will increase the score when there
are more points included in plan P . Algorithms selecting points for P should
not stop when the user preferences are fulfilled and there is still time left to visit
additional POIs. At those moments, other POIs can be added, to increase the
overall rating and make the user experience points he/she had not thought of
before.

In the POIScore we multiply the rating r and matchScore by the service
time d. In the score function the sum of POI scores is divided by the size of the
overall time window defined by the user. This is to ensure that plannings with
multiple mediocre points with a small r and a small d, will not outweigh a great
POI with a high r and a high d. So ten shops with a rating 0.5 and duration of
10 will not outweigh a museum with rating 0.9 and duration of 120.

(a) Non-Match (b) Perfect Match (c) Subsume Match (d) Plugin Match

Figure 3.2: Different types of matching between classes.

The total travel time computed by Equation 3.7, is judged by Equation 3.8 in
comparison to the maximum and minimum travel time. The maximum travel
time is defined by the user through tendplan − tstartplan . The minimum travel
time will always be 0, this is the case when a POI is at the same place as the
next POI. Therefore, we can rewrite equation 3.8 into 3.9. The travel time score

28

is scaled between [0, 1] where 1 means that the user will not travel at all and 0
means that the user will only be travelling, without seeing any POI.

TravelT ime(P) =

l∑
i=0

ti,i+1 (3.7)

Time(P) = 1− TravelT ime(P)−minimumTravelT ime

(tendplan − tstartplan)−minimumTravelT ime
(3.8)

Time(P) = 1− TravelT ime(P)

c1 · (tendplan − tstartplan)
(3.9)

The rating of any planning P can be calculated by using the grading function
in Equation 3.10, where Keagerness and Klaziness are constants between [0, 1].
When Keagerness � Klaziness the grading function will tend to care less about
the travel time, resulting in plans more appropriate for active people, who want
to see the POIs best fitting their preferences and with the highest rating. In
case of Keagerness � Klaziness, a low travel time is very important, which will
result in plans more appropriate for lazy people, at least people who do not
appreciate to travel a bit in order to see great POIs.

Rate(P) = Keagerness Score(P) +Klaziness Time(P) (3.10)

Examples of city trip plans corresponding to the user requirements of the
scenario of Section 3.1 can be found in Section 8.2.3. These plans adhere to all
the constraints specified in this chapter.

29

Chapter 4

Architecture

The overall system architecture, as used within the LarKC environment, is de-
scribed in Section 4.1. In Section 4.2 we discuss the conceptual model of our
main data type, the point of interest. Section 4.3 describes the way of modelling
the distances between the points of interest. A description of the ontology used
to structure the data can be found in Section 4.4. The plug-ins used to ac-
complish the overall functionality are discussed one by one in Section 4.5. The
frontend, which is not part of LarKC, is discussed in Section 4.6

4.1 System Architecture In LarKC
The high-level architecture of our LarKC application is graphically depicted
in Figure 4.1. The Planning Decider controls and loads the workflows, the
Point Selecter generates T-sets, the TSPTW Reasoners makes plans P , the
RankDecider grades and ranks the found plans and the Cartographer generates
output files of the best plans.

Endpoint PlanningDecider

PointSelecter

TSPTWReasoner

LarKC

Frontend

RankDecider Cartographer

TSPTWReasoner

DTR/Radius
Workflow

Figure 4.1: The high-level system architecture in LarKC.

30

The Planning Decider is the first plug-in loaded by the platform and controls
the overall process of generating city trip plans. On start up, appropriate POI
data is loaded into the data layer in addition to the user preferences. The plug-
in is connected to the SPARQL endpoint and receives the queries, which it uses
to query the data layer of LarKC after a successful city trip generation iteration.
The number of desired plans is communicated to the Point Selecter plug-in.

The Point Selecter determines multiple sets of points of interest according
to a specified strategy, considering the graph G, tstartplan , tendplan and the user
preference sets UI, UC and NUC. The amount of generated sets depends on
the number of plans desired by the user. The computed sets T are used in the
following process, the TSPTW Reasoner.

The TSPTW Reasoner retrieves the weights of the edges between the points
from graph G and uses this combination of points and weights to compute the
optimal routes. As discussed in Section 2.3.2, this is computationally speaking
a very complex process, making this plug-in the bottleneck of the workflow. In
order to speed up the process, we decide to enable the parallel execution of this
plug-in, using a LarKC workflow parameter.

The output of the TSPTW Reasoner is a list P , containing a specific se-
quence of POIs. These plans are graded by the RankDecider using the function
shown in equation 3.10. The plans are ranked and send to the next plug-in, the
Cartographer.

The Cartographer takes the plans P as input, computes the detailed routes
between the POIs and patches them together. This results in a representation
of a route, a list of path information objects. This list could be used to graph-
ically show the route on a map, or for navigating between the different POIs.
The overview of the different plans P is presented to the user by the Planning
Decider.

4.2 Modelling Points Of Interest
The LarKC plug-ins require data in order to function correctly. The primary
kind of data used by the application are geographical points which might be of
interest to a tourist. These points of interest (POIs) can be all sorts of entities.
Examples are churches, squares, shops, restaurants and museums. A depiction
of the general data structure can be found in figure 4.2. The Duomo of Milan
is depicted in 4.3, according to the proposed data structure. All the LarKC
components use information represented by these points in one way or another.

The POIs should include latitude and longitude values in order to determine
their position respective to one another. Also, a time window [a, b] is important,
where a is the opening time and b the closing time. The indication of the time
d in minutes can be seen as a duration description: the time a tourist will likely
spent at the given POI.

31

Point
lat (float)
long (float)

POI
label (string)

Rating
value (double)

OpeningHours
opens (time)
closes (time)

DurationDescription
minutes (integer)

hasRating hasOpeningHours

hasServiceTime

hasLocation

Reviewer
label (string)

isRatedBy

Class
label (string)

directType

subClassOf

Figure 4.2: Graph depicting the information linked to a point of interest.

Heuristics can be used to determine probable time spent at different sorts of
POIs: a tourist will probably spent less time visiting a square than a museum.
A rating value r will indicate how interesting a certain POI is, which can be
used to distinguish interesting POIs from less interesting POIs.

Point
lat 45.464169
long 9.191389

POI
label “Milan
Cathedral”

Rating
value 8.3419

OpeningHours
opens 7:00
closes 18:45

DurationDescription
minutes 30

hasRating hasOpeningHours

hasServiceTime

hasLocation

Reviewer
label “Basso”

isRatedBy

Class
label “Chruch”

directType

subClassOf

Figure 4.3: Graph of the data linked to the Duomo POI.

32

4.3 Modelling The Distance Between Points Of
Interest

The TSPTW solver needs a set of points, the location of the points, the time
windows of- and probable time spent at the respective points. These things can
all be retrieved from the data linked to the POIs. Data that has to be deducted
are the weights of the edges in E . The most trivial choice for the weights is the
distance between two points, but one could also think of more complex weights
incorporating the comfort of the journey between two points, causing the most
pollution or whether it is a beautiful path or not.

The deduction of distance could be done by an external service, for example
Google Maps. Another option is doing it locally, using for example the Open-
StreetMap dataset in combination with path finding algorithms. At this point
of development of the application we decide to determine the distance locally
and not to use a routing algorithm. For simplicity, we determine the Euclidean
distance on the fly. This will still enable the strategies and TSPTW to utilize
realistic distances between the points.

4.4 Categorizing Points Of Interest
In order to effectively store data about points of interest and doing this in a
way that makes the information easily retrievable, we have to store the data
in a structured format. A good way of structuring information is by using an
ontology to define an hierarchy between concepts within our data. Using the
ontology we can structure the data by assigning individuals to a node of the
corresponding class. This structure can then be utilized to find better fitting
activities to include in plan P , a tourist could for example specify to only go to
points belonging to the nightlife classes while avoiding the cultural attractions.

Considering the ontology, we have two options: creating our own ontology
that includes all of the concepts, relationships and properties we need or, reusing
an existing ontology that already describes everything we need. Since creating
a conceptual valid ontology is a complex and time consuming task, we would
prefer to reuse an existing ontology. Reusing ontologies is also a key concept of
the Semantic Web, it ensures that within different systems the same definitions
of concepts are used.

One of the candidate ontologies for reuse is the ontology used for structur-
ing the LinkedGeoData dataset. This ontology is automatically deducted from
the OpenStreetMap data using a configuration file [7]. The ontology contains
concepts that are defined more than once, which makes the ontology not ap-
propriate for our application. For example, the ontology contains the concept
Tourism with a subclass TourismMuseum and a class Historic with the sub-
class Museum. Another example is the concept Hotel, the Tourism class has a
subclass TourismHotel as well as a subclass Hotel.

The LinkedGeoData ontology is relatively shallow, where the selection pro-
cess of POIs could benefit from an extensive subclass structure. For example, the

33

class Tourism has the subclasses Hotel and Hostel, where a division of Tourism
with subclass Places_To_Sleep with, on its turn, subclasses Hostel and Hotel
would have been better in our case.

A more detailed taxonomy, with multiple levels of classes, would enhance
the functioning of the City Trip planner. This is why we decide to create our
own ontology, using the editor Protégé1. The resulting ontology is a taxonomy
of classes, a part of it is depicted in Figure 4.4. All the classes are displayed in
Appendix A.

Figure 4.4: A part of the ontology, with the branch of the HistoricBuilding
completely expanded.

In Figure 4.4 all the subclasses of HistoricBuilding are shown. When, for
example, a tourist indicates the desire to visit a historic building, the application
now not only considers visiting the points of interest with the class historic

1Available at: http://protege.stanford.edu

34

http://protege.stanford.edu

building, but also its subclasses Church, Castle, Ruins and Fort.

4.5 LarKC Plug-ins
Here we describe each individual LarKC plug-in on a conceptual level. We start
with the Planning Decider in Section 4.5.1. We continue with the Point Selecter
in Section 4.5.2. In Section 4.5.3, we describe how the selected sets are turned
into city trip plans by the TSPTW Reasoner. The plans are judged by the Rank
Decider as described in Section 4.5.4 and we conclude with the Cartographer in
Section 4.5.5.

4.5.1 Planning Decider
As can be seen in the system overview of Figure 4, the Planning Decider loads
the workflow which is used to accomplish the city trip planning generation,
using either the DTR strategy or the Radius strategy. It conducts the creation
of the desired number of plans and communicates with the frontend using the
query endpoint. The Planning Decider is the first plug-in initialized by the
application. When the Planning Decider is initialized, it waits for an incoming
query from the endpoint until taking further action.

There are two strategies available for the point selection process and de-
pending on the users preference, one of the strategies is loaded through its
corresponding workflow. At the moment a query is submitted, the workflow
is loaded and the city trip generation process starts with the Point Selecter.
When the last plug-in, the Cartographer returns its results, the Planning De-
cider uses the SPARQL query obtained from the endpoint on the received data
and outputs the query results to the endpoint.

4.5.2 Point Selecter
The main type of input needed by the TSPTW Reasoner is a set T, a set of
points for which it will estimate a short route visiting all the nodes in the given
set. Whether this route is relevant and interesting for a tourist mainly depends
on the chosen points. T should contain POIs that are useful and worthwhile to
visit for a tourist [4]. A PointSelecter plug-in is used to create these T-sets.

A set T is indirectly judged by the grading function Rate(P) (equation 3.10),
after the TSPTW reasoner computed the shortest route visiting all the points
in the set. The set of points selected by the PointSelecter should thus adhere to
a number of constraints in order to maximize the score of the grading function
Rate(P). Two point selection strategies trying to accomplish this, are described
in Chapter 5. For each of these selection strategies a separate LarKC plug-in
and workflow is created, enabling one to choose which strategy to use.

35

4.5.3 TSPTW Reasoner
The TSPTW reasoner takes care of calculating a “good route” that visits all the
points for the sets T selected by the Point Selecter. On its input, the TSPTW
reasoner receives all the generated sets T . After running the TSPTW solver,
the reasoner outputs plans P .

The latitude and longitude of POIs is not the only information considered
by the TSPTW solver, time related information is also taken into account.
As described in Section 2.3.2, this set of problems is the so-called Traveling
Salesman Problem with Time Windows (TSPTW). We include the notion of
time windows and service times in our application, for multiple reasons. Tourists
will want to have dinner at a certain time, some POIs have limited opening times
and at some places you will want to spent more time than at others.

In Section 2.3 another specific form of the Traveling Salesman Problem is
introduced; the Time Dependent Traveling Salesman Problem (TDTSP). We
would like to incorporate this algorithm in our application. However, in this
project we choose to focus on the TSPTW and not on the TDTSP for several
reasons. The kind of data needed to consider the time dependency is hard to
retrieve. For example, traffic data is not available for each city and even if it is,
it might not be publicly available. Including the notion of time dependency is
also a complex task and implementing this does not outweigh the gains in the
scope of this project.

As discussed in Section 2.3.2 there are currently several TSPTW implemen-
tations available. Because the focus of our thesis lies with the Point Selecter
and the field of the TSPTW is a well explored field resulting in many efficient
implementations, we decide to use an existing implementation. Since a large
part of the hypothesis is that we are able to generate plans quickly, we need a
fast TSPTW solver. The TSPTW solver, as proposed and designed by Rodrigo
Ferreira da Silva and Sebastian Urrutia in [17], is the fastest implementation
currently available and even though it does not guarantee an optimal solution,
the quality of the solutions are good. Therefore, we decide to incorporate this
implementation in the TSPTWReasoner plug-in.

4.5.4 Rank Decider
The Rank Decider receives the plans P on its input. Using the grading function
depicted in Equation 3.10, each plan is assigned a grade. These grades are used
to rank the results from high to low and enable the frontend to present the user
with the best obtained city trip plans. On its output the Rank Decider provides
the Cartographer with plans with corresponding grades and ranks.

4.5.5 Cartographer
The Cartographer handles the transformation from the list P to a list with
detailed routing information appropriate for depicting the route on a map, or
navigating a tourist through a city. Basically, this plug-in transforms the results

36

into a usable format that can be interpreted by the front-end. The current main
objective of the Cartographer is to output information which can be used to
depict the generated city plans on a OpenStreetMap based browser instance.

4.6 Frontend
The user needs to be consulted at multiple points in the process about:

• The start and end location of the route, POIstart and POIend

• Instance preferences UI

• Class preferences UC and NUC

• Time constraints of the plan tstartplan and tendplan

• Plan P preference

The first four interactions will take place before the PointSelecter is initiated.
The plan preference stage will start at a later point, when the TSPReasoner
generated a couple of plans P , from which the user should choose one.

The LarKC platform only accepts queries as input, which for the average
tourist is not an appropriate way of communicating with an application. This is
why there should be a frontend, enabling regular people to use the application
while not being bothered by queries. A frontend can be realised using different
techniques, one more complex to implement than the other.

Although creating a mobile phone app as frontend would be an appropriate
choice for this application, this is, unfortunately, not in the scope of our master
thesis. Creating a solid app takes a lot of time and is not required to show the
correct functioning of the implemented algorithms.

Instead, we start with a simple frontend that can be used while developing.
While we develop the strategies and the overall LarKC application, we simply
add the parameters mentioned above to the code. The user preferences (sets UI,
UC and NUC) are loaded from a text file, to easily load different scenarios. All
the generated city trip plans are send to the Cartographer, which will generate
files to show the end result.

The end product will comprise a website showcasing the functionality of the
application, which will be handling all the user interaction. A simple web-page
like the one used to demonstrate the original Alpha Urban LarKC application2

is, for example, a more natural way of communicating with the user than the
use of console commands and files. POIstart, POIend, UI, UC, tstartplan and
tendplan can be specified in a home screen, which using javascript are translated
into a user query for the LarKC platform. After processing this query the
platform outputs a list of plans P , which are graphically shown to the user.
When a user selects one of the plans, it will be displayed on a map using the
OpenStreetMap.org API.

2http://seip.cefriel.it/alpha-Urban-LarKC/

37

http://seip.cefriel.it/alpha-Urban-LarKC/

A different possibility would be to create a Java GUI that communicates
directly with the platform. However, due to the fact that Java GUIs are most
of the time not the most user friendly ways of communicating with the user
and that a website would in principle be able to reach out to a much greater
audience, we decide not to do this.

38

Chapter 5

Strategies

This chapter contains a description of the three strategies selecting POIs in or-
der to create sets T, which are later on used as input for the TSPTW-solver. The
Baseline strategy is a naive approach that simply enumerates all the possible
sets, considering the user preferences. The results of this strategy are optimal,
but enumerating all the possible solutions is time consuming. The Distance
Times Rating strategy and Radius strategy, take a heuristic approach, consid-
ering the rating of points and the distances between points, in order to find
good solutions in a short period of time. Table 5.1 contains the objects used by
all strategies.

Objects Description
S Set containing all the POIs in the dataset.
T Set which is filled with POIs in order to eventually serve as

input for the TSPTW solver.
Q Queue containing T-sets ready for the TSPTW solver.
UI Set containing POIs preferred by the user.
UC Set containing class pairs representing the class user prefer-

ences.
classPair Pair of a class and the amount of times the class is preferred.
NUC Set containing classes the user does not want to visit.

Table 5.1: Objects used by multiple strategies.

5.1 Baseline Strategy
The Baseline strategy of the point selecter is a basic strategy that enumerates
every possible combination of POIs that fits the user preferences, as defined
in Section 3.3. The function Enumerate(S,UI,UC,NUC) → Q uses the set
containing all POIs S and the user preferences to fill the queue Q with all enu-
merations, where Q = {T1, . . . , Tn} and each Ti ⊇ UI . The number of sets

39

added to Q depends on the number of possible enumerations of class prefer-
ences in combination with randomly added POIs while taking an upper bound
into account. We provide an elaborate description of the Baseline strategy in
Section 5.1.1. The main steps of the Baseline strategy are designed as recursive
functions. Due to the complexity of recursive functions, we provide an example
in Section 5.1.2, containing a step by step description of the complete process.

5.1.1 Description Of The Baseline Strategy
The strategy consists of two major steps: enumerating all possible combinations
of POIs that satisfy the class preferences as well as the instance preferences and
for each of these combination extending them with other points to generate T-
sets with a length up to the upper bound1. Both steps are designed as recursive
functions of which an extensive description can be found below. Table 5.2
illustrates all the objects that, in addition to those in Table 5.1, are used in the
Baseline strategy.

Objects Description
Bc Set of all POIs that are instances of class C or of a subclass of

class C.
Bfill Set of all POIs that do not match the user preferences. Used

to fill up plans.
icp Initial classPair that serves as the first class the enumerate−

Pref function is going to look for.
SCc Set that contains all subclasses of class c.
CP Incomplete set that satisfies some user preferences. This is the

set the enumeratePref function is currently working on.
CE The set the enumerateExtension function is currently work-

ing on.
PR Set containing all found preference sets.

Table 5.2: Objects used by the Baseline strategy.

In Algorithm 1, we present a description of the first step in the enumera-
tion process. Before the recursive function can be called, we define the initial
classPair icp by retrieving a random element of the set UC. Next we call the enu-
meratePref function with the icp variable, UI as the basis of each enumeration
(the POIs in UI have to be included in each set), the set of possible POIs that
can be used to satisfy the class preference icp using the listPossiblePois(icp)
function and the complete set of class preferences.

Using these variables we enter the first level of the recursive function. The
first thing that needs to be done is checking the amount of POIs of the current
class the algorithm is working on should still be included in the current set.
This is stored in a new variable initialTimesPreferred. The rest of the process is

1See Section 3.3 for an explanation of what the upper bound of a city trip is

40

repeated for each possible POI of the current class we are working on, hence the
for all statement. A copy of the current set is created to prevent the function
from altering the original one, since it is still needed in later steps. The same
holds for the current set of class preferences that still need to be fulfilled. The
POI in question is then added to the current set CPnew and removed from the
list of possibilities. Following on this, timesPreferred is lowered by 1. Based
on the state of UCnew, the algorithm can now continue in different directions,
resulting in three cases.

Algorithm 1 Enumerate all possible Preference-sets
1: icp← random element e ∈ UC
2: EnumeratePref(icp,UI, listPossiblePois(icp),UC)
3: procedure EnumeratePref(classPair, CPold,Bclass,UCold)
4: initialT imesPreferred← classPair.getT imesPreferred
5: for all poi ∈ Bclass do
6: CPnew ← CPold

7: UCnew ← UCold
8: timesPreferred← initialT imesPreferred
9: CPnew.add(poi)

10: timesPreffered← timesPreffered− 1
11: Bclass.remove(poi)
12: if timesPreffered = 0 then
13: UCnew.remove(classPair)
14: if not UCnew.isEmpty then
15: newClass←random classPair∈ UCnew
16: BnewClass ← listPossiblePois(newClass)
17: EnumeratePref(newClass, CPnew,BnewClass,UCnew)
18: else
19: PR.add(newSet)
20: end if
21: else
22: classPair.setT imesPreferred(timesPreferred)
23: EnumeratePref(classPair, CPnew,Bclass,UCnew)
24: classPair.setT imesPreferred(timesPreferred+ 1)
25: end if
26: end for
27: end procedure

The first case occurs when timesPreferred = 0 and UCnew is not empty.
This means that the current class the algorithm was working on is fulfilled, but
there are still other class preference that need to be fulfilled. In this case a
new classPair is retrieved from UCnew and the corresponding possible POIs are
enlisted by the function listPossiblePois and saved in the set BnewClass. Now
enumeratePref is called, passing along the new classPair, CPnew, BnewClass

and UCnew.

41

The second case occurs when timesPreferred = 0 and UCnew is empty.
This is the actual stop condition of the recursive algorithm and means that the
current CPnew satisfies all the user preferences. The resulting CPnew is added
to PR and the algorithm returns one step up in the recursion.

The last case occurs when timesPreferred > 0, which means that the cur-
rent class the algorithm is working on is not yet fulfilled. Now the enumeratePref
algorithm is called, passing along the old classPair with a lowered rating, CPnew,
Bclass and UCnew to continue finding POIs of the current class.

In Algorithm 2, we show the pseudocode of the second step in the enumera-
tion process: the fill up. When calling the function, there are two objects that
are passed along. These are the possible set of fill up points Bfill created by
calling upon the function ListPoisForExtension and an empty set, because the
starting set needs to be empty. The listPoisForExtension function returns all
POIs i for which holds:
• i 6∈ UI

• i instanceOf C ∧ C 6∈ UC, meaning that i should not be an instance of a
preferred class or a subclass of a preferred class.

• i instanceOf C ∧ C 6∈ NUC, meaning that i should not be of an instance
of a non preferred class or a subclass of a non preferred class.

The first statement at line 3 in the algorithm is the stop condition. It states
that the algorithm should only create sets that are of length lower or equal to
the upper bound and that it should also stop when there are no more POIs that
can be used. Next, a copy of Bfill is made in order not to modify the original
one, because the original one is still used in the iteration.

Algorithm 2 Enumerate all possible T -sets by adding remaining POIs

1: EnumerateExtension(listPoisForExtension(UI,UC,NUC), {})
2: procedure EnumerateExtension(Bfill, CFold)
3: if Bfill.isEmpty ∨ CFold.size = upperbound then . Stop condition
4: return
5: end if
6: BfillNew ← Bfill
7: for all poi ∈ Bfill do
8: CFnew ← CFold

9: CFnew.add(poi)
10: BfillNew.remove(poi)
11: if CFnew.length ≥ lowerbound then
12: for all prefSet ∈ PR do
13: Q.offer(combine(prefSet, CFnew)
14: end for
15: end if
16: EnumerateExtension(BfillNew, CFnew)
17: end for
18: end procedure

42

The rest of the process is repeated for each POI in Bfill. A copy of the
current set is made in order to preserve the old one, since it might still be
needed on a higher level in the recursion. The current set is then expanded
with the POI that is currently selected. Next, the POI in question is removed
from BnewFill to mark that it can no longer be used. If the length of the current
set exceeds the lower bound, it is suitable to include in a T-set. It is combined
with each of the preference sets to generate T-sets that are added to Q. Next,
the function goes deeper into the recursion, passing along the new set of possible
POIs BfillNew and CFnew.

5.1.2 Example
Due to the complexity of the recursive property of the Baseline strategy, we
present an example in order to clarify the process.

In our example situation we define the sets S = {m1,m2,m3, c1, c2, r1, r2},
UC = {(Restaurant, 1), (Church, 2)} and UI = {m1} where m1,m2 and m3
are instances of class Museum, c1 and c2 instances of class Church and r1 and
r2 instances of class Restaurant. An overview can be found in Table 5.3.

Class POIs
Museum m1, m2, m3
Church c1, c2
Restaurant r1, r2

Table 5.3: Example classes Baseline

In Figure 5.1 the construction of preference sets and extension sets of the
example situation can be found. In both cases, the node at the top of the
tree is the first level of the recursion, which means that it represents the base
set of the process. For the enumeratePref function this is UI and for the
enumerateExtension function this is an empty set.

Each level of the tree represents a recursion level meaning that for each level
the algorithm traverses in the recursion, we also have to traverse a level deeper
in the tree. The nodes which are formed like an ellipse in the enumeratePref
tree, are nodes that do not satisfy each user preference and thus are not added
to PR. The leaf nodes in the form of a rectangle are the sets that satisfy all
the user preferences and are added to PR.

In order to initiate the enumeratePref process, we need to retrieve an
initial class from the set of preferred classes. Since sets are unordered objects,
this will be a random element from the set UC. Next, we initiate the function
enumeratePref and pass along the intitialClass, a set of POIs that belong to
that class (using the function listPossiblePois) and UI.

Let us say that we select the class church at random. The set of possible
POIs (Bchurch) will now contain c1 and c2. The algorithm selects c2 at random
to create the set {m1, c2}. Since the class preference of church is not yet
fulfilled, the algorithm traverses one level deeper and, at this level, forms the

43

set {m1, c2, c1}, which satisfies the class preference of church. At this moment,
the class preference of one restaurant still needs to be fulfilled, so the algorithm
traverses another level deeper. Here it selects r2 as the restaurant and creates
the set {m1, c2, c1, r2} that satisfies all user preferences and, thus, is added to
PR.

{m1}

{m1,c2} {m1,c1}

{m1,c2,c1}

{m1,c2,c1,r2} {m1,c2,c1,r1}

(a) EnumeratePref

{}

{m3} {m2}

{m3, m2}

(b) EnumerateExtension

Figure 5.1: Trees visualizing Baseline example.

On this level there is another possibility of adding restaurant r1. The algo-
rithm constructs the set {m1, c2, c1, r1} and also adds this to PR. Now all the
possibilities are explored and the algorithm traverses one level up. Here the
possibilities were also explored, so the algorithm traverses another level up.

At this level there was still a possibility of adding c1 instead of c2, so the
set {m1, c1} is created. With this set, the user preference of church is not
yet fulfilled so the algorithm traverses one level deeper. Since there are no
possibilities left at this level, the algorithm does not go into the forAll loop
and thus traverses up one level and leaves the recursion.

The process for enumerateExtension progresses in a similar fashion, but
there is only one set of possibilities (Bfill) and each node is a valid extension
set, even the empty set. Every generated extension set is combined with each
of the found preference sets to generate valid T-sets. This results in the eight
T-sets that can be found in table 5.4.

44

Extension Set Preference Set Resulting T-set

{} {m1, c2, c1, r2} {m1, c2, c1, r2}
{m1, c2, c1, r1} {m1, c2, c1, r1}

{m3} {m1, c2, c1, r2} {m1, c2, c1, r2,m3}
{m1, c2, c1, r1} {m1, c2, c1, r1,m3}

{m3,m2} {m1, c2, c1, r2} {m1, c2, c1, r2,m3,m2}
{m1, c2, c1, r1} {m1, c2, c1, r1,m3,m2}

{m2} {m1, c2, c1, r2} {m1, c2, c1, r2,m2}
{m1, c2, c1, r1} {m1, c2, c1, r1,m2}

Table 5.4: Resulting T-sets of the Baseline example.

5.2 Distance Times Rating Strategy
The rating function introduced in Section 3.3 considers multiple aspects of a
city trip plan to determine whether it is good or not. The plan must include
POIs matching the user preferences and it must comply with the overall time
window tendplan−tstartplan , otherwise it is invalid. Major aspects influencing the
score of the rating function are the amount of time used for traveling between
points, the rating of the chosen POIs and the time spent at these points.

The Distance Times Rating strategy (DTR), described in pseudo code in
Algorithm 4, considers these aspects in order to find promising T-sets. Objects
introduced specifically for DTR can be found in Table 5.5, whereas additional
objects, which are shared with the other two strategies, can be found in Table
5.1.

Objects Description
Sfiltered S without all the points belonging to classes in NUC

and without the POIs from UI.
classLists An object containing lists with POIs belonging to a class

C.
includedClasses List containing the classes present in classLists.
banQueue The banQueue contains POIs who are going to be

banned.
banAmount The number of POIs that should be banned.
BP Set containing the POIs which are currently banned.
CC Set containing the classes which are considered either

for adding POIs corresponding to the user preferences
to the T-set, or for adding fill POIs to the T-set.

cardinality The estimated optimal number of POIs to be included
in a T-set.

foundSets A set containing all the T-sets already found.
desired The number of desired T-sets.

Table 5.5: Objects used by the DTR strategy

45

In order to select appropriate points, DTR adds the POIs of set S to lists
which correspond to their respective class membership. These lists are ordered
according to the time it takes to reach the candidate POI from one of the points
the tourist is already about to visit combined with the rating of the candidate
POIs, thereby attempting to minimize travel distance and maximize the POI
ratings. Table 5.6 contains an example of such a classLists object, filled with
POIs from the baseline example of Section 5.1.2.

ClassList POIs and Respective Scores
Museum (m2,0.87) (m3, 0.63) (m1, 0.21)
Church (c1, 0.79) (c2, 0.33)
Restaurant (r2, 0.70) (r1, 0.66)

Table 5.6: Example ClassLists object with most promising POI in bold.

The most promising candidate POI is added to the T-set and the distances
are updated using this new POI. This process is repeated until the T-set is
of the size optimal cardinality and can be submitted to the TSPTW process.
The optimal cardinality is updated by Algorithm 10 each time a new point is
added, in order to determine whether adding another point will violate the time
constraints, thereby creating plans with as many points as possible.

While the main algorithm of the strategy, given in Algorithm 4, makes the
generation of multiple T-sets possible, the most important algorithm is the one
actually creating the T-sets, Algorithm 3. This algorithm keeps adding POIs to
the current T-set until the optimal cardinality is reached. Every time a new POI
is added, the classList objects scores are updated using Algorithm 6. Which
POI is added depends on whether there are still user class preferences left. When
there are, Algorithm 8 is used to find an appropriate POI, otherwise Algorithm
9 is used to find a fill POI.

Algorithm 3 The creation of T-set using the DTR strategy

1: procedure createTSet(S, UC, UI, POIstart, tstartplan , tendplan)
2: cardinality ←∞ . Will be refined
3: T ← new Set(UI)
4: while T.size() < cardinality do
5: classList.scoreLists(T)
6: if noClassPreferences() then
7: chosenPoi← findFillPoi(T)
8: else
9: chosenPoi← findUserPoi(T)

10: end if
11: if not banQueue.contains(chosenPoi) then
12: banQueue.add(chosenPoi)
13: end if

46

Algorithm 3 The creation of T-set using the DTR strategy (continued)

14: T.add(chosenPoi)
15: cardinality ← determineCardinality(T, tstartplan , tendplan)
16: end while
17: return T
18: end procedure

When a POI is added to the T-set, it is also added to the banQueue. The
banQueue is used to create a sequence of points to exclude (i.e., ban) from the
lists that are used by the processes searching for appropriate POIs to add to the
T-sets. When the right points are excluded, additional T-sets nearly as good as
the first T-set can be created.

The main method of the DTR strategy, as described in Algorithm 4, starts
by generating the classLists object, after which it uses a while-loop to continue
creating T-sets until the number of found sets matches the amount of sets desired
by the user. Due to the constant change of the scores in the classLists object,
it is not guaranteed that the T-set is not already found. The DTR algorithm,
therefore, actively manages the amount of POIs that are banned, resets the
banQueues when needed and permanently bans POIs when it is impossible to
generate new sets using the current considered POIs. This results in three cases
when there is a new T created.

The first case occurs when T has never been found before. At this
moment T is added to the foundSets and Q, which serves as input for the TSP
solver. The method counsel() is invoked, to grant mercy to POIs banned in
the previous iteration and to ban a banAmount number of POIs for the next
iteration, in order to ensure the creation of new sets. If the current set T is the
best set deducted using the currently known information, the current banQueue
is saved as the bestBanQueue, for later use.

The second case occurs when the set is already found and too many
POIs are banned. When the number of POIs which have to be banned ex-
ceeds the optimal cardinality, the counsel method will attempt to ban more
points than available in the banQueue. To counter this problem, one POI
of the bestBanQueue is permanently banned. This will result in new T-sets,
all without the banned POI. The iterations start over with new queues and a
banAmount of 1.

The last case occurs when the set T is already found and banAmount
does not exceed the cardinality. At this point, it is unlikely to create good
new sets, because all the best POIs have already been banned. In order to create
new sets, the number of points which should be banned at once is increased by
one. A new banQueue containing the POIs from the bestBanQueue is created.

The classLists object used for selecting the most promising POIs, is filled
using a filtered set S. The user preferences UI are removed from S, because
they are always added to the initial T set. These POIs will be visited in any
case, otherwise the plan would be invalid. NUC contains the classes of POIs a
user does not want to visit. POIs belonging to these classes and their subclasses

47

are also removed from the set S.

Algorithm 4 Distance Times Rating Strategy

1: procedureDTRStrategy(S, UC, NUC, UI, POIstart, t
startplan , tendplan)

2: Sfiltered ← filterPois(S, UC, NUC, UI, POIstart)
3: classLists.fillLists(Sfiltered)
4: newBestSet← true
5: while foundSets.size() < desired do
6: T ← createTSet()
7: if not foundSets.contains(T) then . Case 1
8: Q.add(T)
9: foundSets.add(T)

10: BP ← counsel(banQueue,BP, banAmount)
11: if newBestSet = true then
12: bestBanQueue.addAll(banQueue)
13: newBestSet← false
14: end if
15: else if foundSets.contains(T) ∧ banAmount ≥ cardinality then
16: grantMercy(BP) . Case 2
17: ban(bestBanQueue, 1)
18: bestBanQueue← new Queue
19: BP ← new Set
20: banQueue← new Queue
21: newBestSet← true
22: banAmount← 1
23: else if foundSets.contains(T) then . Case 3
24: if not bestBanQueue.isEmpty() then
25: banQueue← new Queue
26: banQueue.addAll(bestBanQueue())
27: banAmount← banAmount+ 1
28: end if
29: BP ← counsel(banQueue,BP, banAmount)
30: end if
31: end while
32: end procedure

The POIs of the set Sfiltered are added to lists containing POIs of the same
class. This process is described by Algorithm 5. Whenever there is not a list
containing the current class C of a POI present in classLists, a new list for
that particular C is added. This process is repeated until all POI ∈ Sfiltered
are added to the classLists object.

48

Algorithm 5 Fill the classLists object with POIs

1: procedure fillLists(Sfiltered)
2: for all poi ∈ Sfiltered do
3: class← poi.getClass()
4: if classLists.containsClassList(class) then
5: classLists.addToList(class, poi)
6: else
7: classLists.addClassList(class)
8: classLists.addToList(class, poi)
9: end if

10: end for
11: end procedure

In order to be able to easily pick the best POI available at the moment, we
decide to rank the POIs using a heuristic. The next process sorts the lists in the
classLists object using a score obtained by Formula 5.1. The pseudo code of
this process is given in Algorithm 6. The rating of each POI is already available
in the dataset, represented as r ∈ [0, 1].

The distance to the nearest point has to be calculated using Algorithm 7,
which utilizes a for loop to determine the nearest POI in T. In order to be able
to scale the distance score from 0 to 1, a measure of maximum distance has to
be known. This is the highest found distance between two POIs in the dataset.
After the heuristicScore(POI) is calculated for each POI in each list in the
classLists object, all the lists are sorted using the scores.

heuristicScore(POIi) = ri · (1−
minDistance(T)

maximumDistance
) (5.1)

Algorithm 6 Assign scores to the POIs present in the classLists object

1: procedure scoreLists(T, POIstart)
2: for all class ∈ includedClasses do
3: list← classLists.getList(class)
4: for all poi ∈ list do . Rate each poi in list
5: nearest← determineNearestPoint(poi, T, POIstart)
6: rating ← poi.getRating()
7: score← (rating · (1− (nearest / maxDistance)))
8: POI.setScore(score)
9: end for

10: list.sort() . Sort the list using obtained scores
11: end for
12: end procedure

49

Algorithm 7 Determine nearest point in T
1: procedure determineNearestPoint(poi, T, POIstart)
2: nearest←∞
3: for all tPoi ∈ T ∪ POIstart do
4: distance← calculateDistance(tPoi, poi)
5: if distance < nearest then
6: nearest← distance
7: end if
8: end for
9: return nearest

10: end procedure

Algorithms 8 and 9 illustrate the process of finding appropriate points for
inclusion in the T-set. Algorithm 8 is concerned with finding the POIs necessary
for fulfilling the user class preferences UC. First a set CC is created, containing all
the classes which are preferred at least once. For each of these classes, the highest
ranking POI in the object classLists is retrieved. Only the POIs which are not
banned or already included in T are considered. The Boolean endListReached
is used to make sure that no more points are considered than there are available
in the list. The POI with the highest overall ranking is returned.

Algorithm 8 Find the most promising POI considering the UC
1: procedure findUserPoi(T, UC)
2: CC ← retrievePreferredClasses(UC)
3: for all class ∈ CC do
4: list← classLists.getList(class)
5: position← 0
6: poi← list.get(position)
7: endListReached← false
8: while poi.getStatus() = banned ∨ poi ∈ T ∧
9: not endListReached do

10: position← position+ 1
11: if position > list.size()− 1 then
12: endListReached← true
13: else
14: poi← list.get(position)
15: end if
16: end while
17: score← poi.getScore()
18: if currentScore > bestScore then
19: bestPoi← poi
20: bestScore← score
21: end if
22: UC.lowerAmountPreferred(bestPoi.getClass)
23: end for
24: return bestPoi
25: end procedure

50

Algorithm 9 is in essence the same as Algorithm 8. There are some minimal
differences though: the amount of times the class is preferred is not lowered
and the possible fill classes are used in the candidate class set CC. The previous
algorithm deducted CC from the preferred classes in UC.

Algorithm 9 Find the most promising POI for filling the T set

1: procedure findFillPoi(T, UC)
2: CC ← retrievePossibleF illClasses(UC)
3: for all class ∈ CC do
4: list← classLists.getList(class)
5: position← 0
6: poi← list.get(position)
7: endListReached← false
8: while poi.getStatus() = banned ∨ poi ∈ T ∧
9: not endListReached do

10: position← position+ 1
11: if position > list.size()− 1 then
12: endListReached← true
13: else
14: poi← list.get(position)
15: end if
16: end while
17: score← poi.getScore()
18: if currentScore > bestScore ∧ not endListReached then
19: bestPoi← poi
20: bestScore← score
21: end if
22: end for
23: return bestPoi
24: end procedure

New points are added to the T-sets until the estimated optimal cardinality
of the set is reached. Finding a number for this optimal cardinality is the
responsibility of Algorithm 10. This algorithm calculates an estimation of the
time required to visit the POIs in the current T-set, by determining the sum of
the service times in addition to an estimation of the travel time, calculated using
the number of included points. This is turned into a prospect by the addition of
the maximum duration d and an estimation of the travel time, thereby leaving
room for a good choice considering the rating function, namely a POI with a
high duration d.

When this prospect does not exceed the overall time window, the optimal
cardinality is increased. The returned cardinality is somewhat pessimistic re-
garding the total time, due to the use of maxService. Otherwise it would be
likely for the strategy to generate a lot of sets which are unsolvable, due to the
imposed time restrictions. When the overall strategy is compared to a baseline,

51

the cardinality should be equal or less than the upperbound of that baseline,
otherwise it is not possible to compare the results.

Algorithm 10 Determine the optimal cardinality for the T sets

1: procedure cardinality(T, tstartplan , tendplan)
2: availableT ime← tendplan − tstartplan

3: cardinality ← T.size()
4: totalServiceT ime← 0
5: for all poi ∈ T do
6: totalServiceT ime← totalServiceT ime+ poi.getServiceT ime
7: end for
8: estimatedT ime← totalServiceT ime+ (30 · T.size)
9: while estimatedT ime < availableT ime do

10: cardinality ← cardinality + 1
11: estimatedT ime← estimatedT ime+maxService+ 30
12: end while
13: if cardinality > upperBound then
14: return upperBound
15: end if
16: return cardinality
17: end procedure

Based on an identical classLists object, Algorithm 3 will produce the same
T-set over and over again. A sound strategy should however produce a desired
amount of unique sets. The method counsel, as described in Algorithm 11, is
used to accomplish this. It grants mercy to the POIs banned in the previous
iteration and uses the banQueue to find the next POIs to ban. The banned
POIs are returned, so they can be granted mercy in the next iteration.

The grantMercy procedure, as described in Algorithm 11, uses the
previouslyBanned set to grant mercy to every POI which was banned in the
last iteration. It set the status of the POI to free and increases the number of
available POIs of the class.

Because every time at least one POI has to be banned to be able to create
a new set, the ban procedure starts by banning the first POI of the banQueue.
It could be that just banning one POI would not create a new set T anymore,
so a peekList is created. This list is used to peek a few spots ahead in the
banQueue and if the size of the peekList allows it, ban a banAmount points
from the dataset.

The banPoi procedure is used for the actually banning of a POI. It considers
the times the class of the POI is needed in order to be able to fulfill the user
preferences. If this amount is the same or exceeding the available amount, the
number of POIs to be banned is temporarily increased in order to skip this POI
and ban another one. If it is possible to ban the POI, the status of the POI
is set to banned, the number of POIs from this class available is decreased by
one and the POI is added to the set of banned POIs. This set of bannedPois is

52

returned.

Algorithm 11 Grant mercy to the previously banned and ban number of POIs

1: procedure counsel(banQueue, previouslyBannedPois, banAmount)
2: grantMercy(previouslyBannedPois)
3: BP ← ban(banQueue, banAmount)
4: return BP
5: end procedure
6:
7: procedure grantMercy(previouslyBannedPois)
8: if not previouslyBanned = null then
9: for all poi ∈ previouslyBannedPois do

10: poi.setStatus(free)
11: poi.getCategory().increaseNumberAvailable()
12: end for
13: end if
14: end procedure
15:
16: procedure ban(banQueue, amountToBan)
17: banAmount← amountToBan
18: BP ← banPoi(banQueue.poll(),BP)
19: peekList.addAll(banQueue)
20: for i← 0, banAmount− 1 do
21: if i < peekList.size() then
22: BP ← banPoi(peekList.get(i),BP)
23: end if
24: end for
25: return BP
26: end procedure
27:
28: procedure banPoi(banPoi, BP)
29: class← banPoi.getClass()
30: timesDesired← class.getT imesPreffered()
31: available← getClassList(category).getNumberAvailable()
32: if timesDesired >= available then
33: banAmount← banAmount+ 1
34: return BP
35: else
36: banPoi.setStatus(banned)
37: getClassList(category).decreaseNumberAvailable()
38: BP.add(banPoi)
39: end if
40: return BP
41: end procedure

53

5.3 Radius Strategy
The DTR strategy is based on ratings of POIs as well as on the distances between
the POIs. Here, we introduce an entirely different approach that also considers
both aspects, but is formalized as a trade-off between them. The basic idea of
the Radius strategy is to select highly rated POIs within an increasing radius,
starting from the center of the urban environment, to form suitable T-sets. An
illustration of the idea can be seen in Figure 5.2. The small cross represents the
center of the urban environment, the blue circle represents the radius and the
POIs are represented by a red dot.

(a) step 1 (b) step 2 (c) step 3

Figure 5.2: Process of Radius strategy

The Radius Strategy forms set containing POIs that lie within the radius.
If no suitable sets can be found or if the user asks for more plans, the radius
is increased. The main advantage of the Radius strategy, in contrary to the
DTR strategy, is the fact that it is able to function without the assumption
of needing a finite dataset. As long as the center is known, one could impose
a geographical query that retrieves all POIs that lie within the radius. Since
we use many different objects within the Radius strategy, we provide a clear
overview in table 5.7.

Objects Description
radius Radius in meters: the distance from the center in

which the strategy searches for suitable points.
radiusIncrease Increase of the radius in meters after each enumera-

tion step. Also starting value of the radius.
center The center of the radius is determined as the

weighted average position of the POIs.
minRating The minimal rating a POI should have in order to

be included in T-sets.
desired The number of desired T-sets.
produced Amount of T-sets that are found.

Continued on next page

54

Objects Description
R Sorted list of all POIs that lie within the current

radius and have a rating above minRating.
Rfill Sorted list of all POIs that lie within the current

radius and have a rating above minRating that do
not match the user preferences, used to fill up plans.

Rc Sorted list of all POIs that lie within the current
radius and have a rating above minRating that con-
tains POIs that are of a certain class c ∈ UC.

icp Initial classPair that serves as the first class the
enumeratePref function is going to look for.

SCc Set that contains all subclasses of class c.
CP Incomplete set that satisfies some user preferences.

This is the set the enumeratePref function is cur-
rently working on.

PR Sorted list containing all currently found preference
sets within the current radius.

FI Sorted list containing all currently found fill sets
within the current radius.

allSets The set containing all sets that already have been
added to Q. Used in following iterations to check
whether found T-sets are new.

Table 5.7: Objects for Radius strategy.

A high level description of the Radius Strategy can be found in Algorithm
12. The strategy starts by determining the centre of the radius, executed by
a separate function that can be found in Algorithm 13. At the start of the
process, we set the radius to 10, meaning that the strategy looks for suitable
points within a radius of 10 meters from the center. Within the while-loop
we call upon the function that does the actual enumeration of all the ‘good
sets’ that can be found inside the radius. Finally, we expand the radius after
each enumeration and rerun the entire enumeration process in order to calculate
additional results. This is repeated until the desired number of T-sets is found.

Algorithm 12 Radius Strategy

1: procedure RadiusStrategy(S, UC, UI, NUC)
2: center ← determineCenter(S)
3: radiusIncrease← 10
4: radius← radiusIncrease
5: minRating ← 0.5
6: while produced < desired do
7: enumerateInRadius(radius, minRating, S, UI, UC, NUC)
8: radius← (radius+ radiusIncrease)
9: end while

10: end procedure

55

The center of the radius is calculated in Algorithm 13. We define the center
of the radius as the “average most interesting point”, which can be calculated
using Equation 5.2 and Equation 5.3. The basic idea behind the “average most
interesting point" is taking the average position of the POIs within an urban
environment as the center. However, due to the fact that certain POIs are more
interesting than others (represented by the rating), the higher rated POIs should
have more influence on the position of the center. Therefore, the geographical
coordinates of each POI in S are multiplied by the rating of the POI to scale
its influence on the position according to its rating. The sum of these numbers
is then divided by the sum of all ratings to calculate the coordinates of the
“average most interesting point”.

latCenter =

∑n
i=1 lati ∗ ri∑n

i=1 ri
(5.2)

lonCenter =

∑n
i=1 loni ∗ ri∑n

i=1 ri
(5.3)

Algorithm 13 Determine the Center of the Radius

1: procedure DetermineCenter(S)
2: sumLat← 0
3: sumLon← 0
4: sumRating ← 0
5: for all poi ∈ S do
6: sumLat← sumLat+ (poi.getLat ∗ poi.getRating())
7: sumLon← sumLon+ (poi.getLon ∗ poi.getRating())
8: sumRating ← sumRating + poi.getRating()
9: end for

10: center.lat← (sumLat/sumRating)
11: center.lon← (sumLon/sumRating)
12: return center
13: end procedure

In order to be able to determine suitable T-sets, we first need to determine
which POIs have an acceptable rating and lie within the radius. Therefore,
we call upon the function getPOIsInRadius, which returns the sorted list R
containing all the POIs within the radius that have a rating above the minimum
rating threshold. This function is described in more detail in Algorithm 15.
Setting the minimum rating threshold is exactly the trade-off mentioned earlier.
On the one hand, if we set the value of minRating too high, the rating is
considered to be more important than distance, since less points will be found
and thus increasing the radius will lead to a higher distance between the different
points. On the other hand, if we set the value ofminRating too low, more points
will be found in a smaller radius making the rating subordinate to the distance.

56

Now that we have the sorted list R, we execute enumeratePref to retrieve
sorted list PR containing all possible sets within the radius that satisfy all the
user preferences. Next, we need to determine which POIs can still be used
to fill up the preference sets to generate T-sets that fill up the users entire
day by calling upon the getF illPOIs function which is, on its turn, explained
in Algorithm 16. Using this sorted list Rfill, we can call the enumerateF ill
function to enumerate all extension sets, starting with the highest rated, and
combining them with each of the preference sets. The enumerateFill function is
described in more detail in Algorithm 18.

Algorithm 14 Enumerate the Possibilities Within the Radius

1: procedureEnumerateInRadius(radius, minRating, S, UI, UC, NUC)
2: R ← getPOIsInRadius(S, UI, NUC, radius, center, minRating)
3: enumeratePref(radius, icp, UI, R, Rc, UC)
4: Rfill ← getF illPOIs(R, UC, UI, radius)
5: enumerateF ill(Rfill, PR)
6: end procedure

Retrieving all suitable points within the radius is done for each POI by
calculating the distance between the POI and the center of the radius. This
process can be seen in more detail in Algorithm 15. If this distance is lower than
the radius, the POI in question is not of a non preferred class or a subclass of a
non preferred class and the rating of the POI is greater or equal to the minimum
rating threshold, the POI in question is added to list R. The calculation of
the distance in meters is executed by the calculateDistance function that uses
Pythagoras’ theorem in combination with the geographical coordinates.

Algorithm 15 Return All POIs Within the Radius

1: procedureGetPOIsInRadius(S, UI, NUC, radius, center, minRating)
2: for all poi ∈ S do
3: distance← calculateDistance(center, poi)
4: nonPref ← false
5: for all subclass ∈ poi.getClass().getSubClasses() do
6: if NUC.contains(subclass) then
7: nonPref ← true
8: end if
9: end for

10: if disance ≤ radius ∧ not UI.contains(poi)
11: ∧ not NUC.contains(poi.getClass())
12: ∧ not nonPref ∧ poi.rating > minRating then
13: R.add(poi)
14: end if
15: end for
16: return R
17: end procedure

57

The function enumerateExtension needs a list of POIs that can be used to
fill up the sets from PR and create T-sets. In order to provide the function with
this list, we define Algorithm 16. POIs that can be used to fill up the T-sets
are POIs that do not belong to a class in UC, not to a subclass of a class in UC
(subsume match), not to a class in NUC, not to a subclass of a class in NUC
and are not in the set UI. Since the latter three were already filtered by using
Algorithm 15, we only have to filter using UC.

Algorithm 16 Return All POIs Within the Radius Not Matching Preferences

1: procedure GetFillPOIs(R, UC, radius)
2: for all poi ∈ R do
3: exact← false
4: subsume← false
5: for all classPair ∈ UC do . Check exactmatches
6: class← classPair.getClass()
7: if class = poi.getCategory then
8: exact← true
9: end if

10: SCclass ← class.getSubClasses()
11: for all subclass ∈ SCclass do . Check subsume matches
12: if subclass = poi.getCategory then
13: subsume← true
14: end if
15: end for
16: end for
17: if not exact ∧ not subsume then
18: Rfill.add(poi)
19: end if
20: end for
21: Rfill.sort() . Sort descending
22: return Rfill

23: end procedure

In Algorithm 17 one can find the enumeratePref function, which enumer-
ates all the Preference sets that can be found given R. The function is recursive
and is stated in a similar fashion as the enumeratePref function of the base-
line strategy in Section 5.1.1. However, due to the fact that we are dealing with
sorted lists as input, there are some minor differences considering the iteration
through the lists Rc. Instead of randomly iterating through them, we use a for
loop that runs from 0 until the size of Rc.

58

Algorithm 17 Enumerates All Preference Sets In Radius Starting With Best
Rated
1: procedure enumeratePref(radius, classPair, CPold, R, Rc, UCold)
2: initialT imesPreferred← classPair.getT imesPreferred()
3: for i← 0 until Rc.size() do
4: UCnew ← UCold
5: timesPreferred← initialT imesPreferred
6: CPnew ← CPold

7: CPnew.add(Rc.get(i))
8: timesPreferred← timesPreferred− 1
9: Rc.remove(i)

10: if timesPreferred = 0 then
11: UCnew.remove(classPair)
12: if not UCnew.isEmpty() then
13: classPair ← UCnew.next()
14: Rc ← getPrefPOIs(radius, R, classPair, CPnew)
15: enumeratePref(radius, classPair, CPnew, R, Rc, setClassnew)
16: else
17: PR.add(CPnew)
18: end if
19: else
20: classPair.setT imesPreferred(timesPreferred)
21: enumeratePref(radius, classPair, CPnew, R, Rc, UCnew)
22: classPair.setT imesPreferred(timesPreferred+ 1)
23: end if
24: end for
25: end procedure

Algorithm 18 describes the extension of the found preference sets with highly
rated points. Using the list of fill points Rfill and PR, T-sets are created in an
orderly fashion. The basic construction of the function is a triple for-loop that
enumerates each possible extension set and combines this with each preference
set to calculate all possible T-sets. This is done by combining each POIi ∈ Rfill

with each fill set in FI, containing all the previous found extension sets, and
add the result to FI. This way, each new POIi ∈ Rfill is combined with all
previous found extension set and thus generates all possible fill sets. The found
fill sets are on their turn combined with the ordered list of preference sets PR.
Since sets containing more points are more likely to result in a plan with a
higher grade, only the generated T-sets of length upper bound are added to Q.

59

Algorithm 18 Enumerates All Fill Sets In Radius Starting With Best Rated

1: procedure enumerateFill(Rfill, PR)
2: for i← 0 until Rfill.size do
3: for j ← 0 until FI.size() do
4: if FI.get(j).size() < upperbound then
5: fillSet← combine(FI.get(j), Rfill.get(i))
6: FI.add(fillSet)
7: for k ← 0 until PR do
8: Tnew ← combine(fillSet, PR.get(k)
9: if not allSets.contains(Tnew) then

10: allSets.add(Tnew)
11: if Tnew = upperbound then
12: Q.offer(Tnew)
13: end if
14: end if
15: end for
16: end if
17: end for
18: end for
19: end procedure

60

Chapter 6

Data

The data used by the city trip planner is an important factor considering the
quality of its results. A discussion on which data sources to use can be found
in Section 6.1. In Section 6.2, we describe the process of pre-processing this
data in order to make it usable for our application. We continue with the data
analysis in Section 6.3 where we take a look at the contents of the different
datasets. Finally, we conclude with Section 6.4, in which we discuss the quality
of the different datasets.

6.1 Data Sources
Given our problem setting, there are many different kinds of data that can be
considered. Tourists might want to visit all sorts of interesting sights in a city
ranging from going to museums and visiting churches to eating at a restaurant
and visiting a club. In order to acquire all of this information, many different
sources of data are needed.

One can imagine that in order to retrieve information about restaurants a
different data source is invoked than for retrieving information about monuments
in a certain area. Besides using different sources for different kinds of data, it
can also be the case that multiple sources can be invoked to retrieve the same
kind of data. Take for example the retrieval of monuments. Information about
monuments is provided by DBPedia as well as by LinkedGeoData. Even though
it is likely that there is overlap between the data sources, some monuments
that are contained within the LinkedGeoData dataset might not be present in
DBPedia or the other way around.

If we were to use multiple sources for one kind of POI, this would imply the
need for instance matching. We would have to check whether an instance from
one source actually represents the same entity as an instances from the other
source. This process could be facilitated by owl:sameAs relations, the Seman-
tic Web way of indicating that concepts represent the same thing. However,
Semantic Web data sources are not yet very common, making most instance

61

matching processes very complex and costly. It is hard to judge whether two
things are the same, because the description of the two instances might differ.
One can think of missing data in one source, conflicting data concerning the
location, multiple POIs with the same name etc.

The above implies that we have to make two decisions: which sources to
include and whether to include multiple sources per POI category. Since the
main focus of this thesis is on effective POI selection and TSP solving and we do
not want to focus on data retrieval, we decide to include one data source that can
provide us with all sorts of information. We choose to use the LinkedGeoData
dataset, because it includes a lot of different kinds of POIs, including: museums,
sights, churches, shops, bars and restaurants.

Using only one dataset also has its drawbacks. First of all, the Linked-
GeoData dataset does not contain information about every kind of POI, for
example, squares. Also, the dataset might not be complete. When considering
only one dataset we are highly dependable on this source and even though the
LinkedGeoData dataset is very comprehensive, it is highly plausible that it does
not contain, for example, every monument on the planet. However, we believe
that the LinkedGeoData dataset is extensive and trustworthy enough to fit our
needs within this project.

6.2 Pre-processing
In order to effectively use the data from LinkedGeoData, we have to do some pre-
processing. We discuss the preference of using localized datasets that contain
POIs of a single city over using a global dataset that contains all POIs in Section
6.2.1. In Section 6.2.2 we discuss the mapping of the LinkedGeoData dataset
categories to our own ontology. We continue with Section 6.2.3, containing a
description of additional properties that we decide to add to the dataset.

6.2.1 Localized Datasets
The LinkedGeoData dataset is a global dataset that contains POIs from all
over the world. Naturally, the first idea that comes to mind is to feed the
global dataset to the city trip planner and base the city trips on this single
dataset. However, this makes the point selection very complex and the amount
of possible sets T immense. When using a very naive method of selecting POIs,
it might even occur that one selects the Empire State building in New York and
the Colosseum in Rome in the same set T. Of course, the selection strategies
do take the notion of distance into account, but they still have to consider the
position of every POI and with the size of this dataset (currently 66 million
triples1) this is a costly process.

Even though the selection strategies will not select POIs from all over the
world, we have to find a way to consider only POIs from the city a user requests.
In order to this, we have several options. The first option is to divide the dataset

1http://linkedgeodata.org/Datasets

62

http://linkedgeodata.org/Datasets

into a tree structure, where each node of the tree represents a grid. This grid
represents a small part of the total geospatial area of the dataset. This could,
for example, be done by using R-Trees [26]. The second option we consider is
to (semi)-automatically create a dataset per city. We can compare the points
in the dataset with the city boundaries, adding the points within the boundary
to the dataset corresponding to the city.

Using methods that automatically generate the tree-structures raise some
problems. Some cities might be spread over multiple grids, which means that we
cannot simply only select a single grid and select POIs from this grid. Another
bigger problem is the fact that we do not know which city is in which grid. This
means that we have to find a way of keeping track of which city is where. This
information is generally not available in R-trees or other spatial indexes.

Because of these problems we choose to use the second method: creating a
separate dataset for each city. Of course, this method also has its drawbacks.
We have to specify bounding boxes for each city and write a small piece of
software that, based on a bounding box, creates a dataset. Since the focus of
our thesis does not lie with the data, we choose to create datasets in this way
for two cities: Amsterdam and Milan. The reason to choose these two cities is
that the quality and the size of the two datasets is very different, which makes
it interesting to compare the performance of the selection strategies on both
datasets. We elaborate on these differences in Section 6.3 and Section 6.4.

6.2.2 Ontology Mapping
As described in Section 4.4, we have designed an ontology in order to struc-
ture our data. The LinkedGeoData dataset is structured according to its own
ontology. Therefore, we have to do a mapping that matches the classes from
the LinkedGeoData ontology to our own ontology. This could, for example, be
matching the TourismHotel class from LinkedGeoData to our own Hotel class.

We only match classes that we believe are interesting for the city trip planner,
thereby removing POIs that are instances of other classes from the dataset. The
complete matching schema can be found in Appendix B.

6.2.3 Added Properties
While the LinkedGeoData dataset provides us with all kinds of information
about POIs, there are some properties that are missing:

• Rating

• Opening time

• Closing time

• Service time

63

For each POI we enter the rating manually with the help of review sites such as
Tripadvisor2, Hostelworld3 and Booking.com4. For each class of our ontology,
we determine a suitable opening and closing time. For example, a pub should
have different opening times (21:00 - 0:00) than a museum (10:00 - 16:00). The
service time is also based on the class and to ensure some variety in the data
we add a random factor to it.

<http://linkedgeodata.org/triplify/node1012644715>
<http://www.w3.org/2003/01/geo/wgs84_pos#geometry>
"POINT(2.54237 48.8299)"

Figure 6.1: Redundant triple removed from the LinkedGeoData dataset.

Figure 6.1 shows a redundant triple included in the LinkedGeoData dataset.
This is a concatenation of the latitude and longitude values of a point. According
to the LinkedGeoData website5, this triple is used by the Virtuoso universal
server software6: “The node positions use of a Virtuoso-specific data type that is
not supported by the open source edition”. We can deduct this information from
the latitude and longitude triples and therefore we decide to remove these triples
from our dataset. In addition to saving storage space, this will prevent later
problems with loading Virtuoso specific data types, in non Virtuoso systems.
When we add additional data sources, with richer information about objects,
we can choose to filter even more triples.

6.3 Data Analysis
In this section we describe the two datasets used for evaluating the strategies
discussed in Section 5. We start with the Milan dataset, because this dataset is
related to the scenario introduced in Section 3.1. The second dataset is the city
of Amsterdam. The distribution of points over classes C is given in addition to
maps of the chosen area.

In Figure 6.2 one can find the distribution of POIs over the different classes
present in the Milan dataset. This figure shows that the points of interest are not
evenly distributed over the classes. For example, there are many more instances
of the class hotel, church and café than of others. Still, the exact numbers are
not very high. One can imagine that the number of restaurants in the city of
Milan is much higher than 10. The total number of POIs in this dataset adds up
to 70. From this number we can conclude that many POIs in Milan are missing
from this dataset.

2http://www.tripadvisor.com
3http://www.hostelworld.com
4http://www.booking.com
5http://linkedgeodata.org/Datasets
6http://virtuoso.openlinksw.com/

64

http://www.tripadvisor.com
http://www.hostelworld.com
http://www.booking.com
http://linkedgeodata.org/Datasets
http://virtuoso.openlinksw.com/

0

2

4

6

8

10

12

P
ub

C
hu

rc
h

B
ar

M
us
eu
m

Su
pe

rm
ar
ke
t

B
oo

ks
ho

p
M
on

um
en
t

H
ot
el

C
af
e

M
al
l

C
lo
th
es
Sh

op
G
ift
Sh

op
R
es
ta
ur
an

t
D
el
iS
ho

p
Fa

st
Fo

od
K
io
sk

Ic
eC

re
am

Sh
op

T
im

es
p
re
se
nt

in
d
at
a
se
t

Class

Figure 6.2: The amount of instances per class in Milan

The map of the area of Milan we choose to include in our dataset and all the
POIs in this area can be found in Figure 6.3. Here we can see that the highest
density of POIs lies around the square of the Duomo, but still there are POIs
scattered all over the city. Note that this figure contains all the POIs and not
only POIs of the classes that we selected as described in Section 6.2.2.

Figure 6.3: Map representing the Milan dataset, each pointer represents a POI.

65

In Figure 6.4 the distribution of POIs over the different classes included in
the Amsterdam dataset can be found. One thing that immediately catches the
eye is the fact that the amount of POIs in this dataset (667) is much higher,
while the surface of the selected area is about the same. This can mean two
things. Either Amsterdam is a much more interesting city or there are more
people working on adding POIs in the region of Amsterdam. Even though we
believe Amsterdam is a nice city, the second option is more likely.

Another thing that stands out is the distribution over the different classes.
As with the Milan dataset, the distribution of POIs over the classes is not equal.
The differences in the amount of POIs per class is even higher. Another point
that can be made is that there are many more classes represented in this dataset
than in the Milan dataset.

It is also worthwhile mentioning that location specific classes appear in both
the datasets. In the Italian dataset the ice cream shop class can be found,
whereas in the Netherlands, where cheese is very popular, cheese shops can be
found.

0

20

40

60

80

100

120

140

C
he
es
eS
ho

p
A
rt
Sh

op
B
ak
er
y

M
us
eu
m

Su
pe

rm
ar
ke
t

H
os
te
l

H
ot
el

C
lo
th
es
Sh

op
G
ift
Sh

op
D
el
iS
ho

p
Fo

od
St
or
e

Je
w
el
le
ry
Sh

op B
ar

C
hu

rc
h

P
ub

P
ar
k

C
as
in
o

B
oo

ks
ho

p
M
on

um
en
t

Sh
oe
Sh

op
P
ho

to
gr
ap

hy
St
or
e

Zo
o

C
af
e

N
ig
ht
cl
ub

R
es
ta
ur
an

t
Fa

st
Fo

od
K
io
sk

T
im

es
p
re
se
nt

in
d
at
a
se
t

Class
Figure 6.4: The amount of instances per class in Amsterdam

The map of the area of Amsterdam, which we consider to cover an interesting
part of the city, in addition to the POIs located inside this area, can be found
in Figure 6.5. This figure shows an even higher concentration of POIs in certain

66

areas than in the case of the Milan map. Especially the area near the canals,
the so-called “grachtengordel”, contains lots of POIs. Since this is the most
lively and interesting part of the city, it is interesting to see that this is also
represented in te distribution. Another interesting area is near the Vondelpark,
at the bottom left, where a lot of museums reside.

Figure 6.5: Map representing the Amsterdam dataset, each pointer represents
a POI.

6.4 Data Quality
We conclude this chapter with a discussion of the quality of the datasets. As
discussed above, especially in the Milan dataset, a lot of POIs are missing.
Besides missing POIs, it can also happen that information of POIs that are
present in the dataset is missing, or is wrong.

Concerning the Milan dataset, the most famous POIs are not present in the
dataset. The Duomo, which can be considered to be the the major touristic
spot of Milan, is missing as well as the famous theater La Scala. Also a lot of
labels of POIs are missing, which makes the POIs unidentifiable. Overall, the
quality of the information differs per POI, some POIs are described extensively
by using lots of properties and others contain only the coordinates, a class and

67

a URI.
The quality of the Amsterdam dataset is much higher. We have not iden-

tified any major touristic spots that are missing and almost all POIs contain
at least a label, coordinates, class and URI. Also, many POIs contain addi-
tional information such as a website and for example the kind of cuisine, when
considering restaurants.

68

Chapter 7

Implementation

In this chapter, we describe the implementation process of the city trip plan-
ner, as specified by to the problem description introduced in Chapter 3 and the
proposed architecture in Chapter 4. We start with Section 7.1 by discussing the
implementation of the two most important data objects, the point of interest
object and the class object. Section 7.2 discusses the implemented testing envi-
ronments, which are used for evaluating the quality of the selection strategies.
We conclude this chapter by discussing the end product of this project in Sec-
tion 7.3: the implementation in LarKC. Besides being the working application,
the LarKC implementation is also used to carry out experiments evaluating the
time it takes to successfully generate city trip plans.

7.1 Implementation Of Data Objects
The implementation of the different objects is not a straight translation of the
conceptual design describing all objects as stated in Section 4.2. Only the
objects class and POI have been modelled as separate objects in the Java im-
plementation. The other objects are, for the sake of simplicity, modelled as
properties of these two objects. In Section 7.1.1 we elaborate on the translation
of the POI object from the conceptual model into the one that is implemented.
In Section 7.1.2 we repeat this process for the class object.

7.1.1 Point Of Interest
The implementation of the POI object incorporates all the information presented
in Figure 4.2 except for the reviewer, because we make no use of reviewers in
the current version of the application. The other objects, except for class,
are modeled as properties of the POI object. The point object containing the
latitude as well as the longitude is modelled as two separate properties: latitude
and longitude, both of type float. The rating is modelled as a property of
type double and is a value between 0 and 1. The duration description object

69

is modelled as an integer property, representing minutes. The opening hours
object is modelled as two separate properties representing opening time and
closing time in the form of strings in the format “hh:mm”.

The reasons for these simplifications are practical. If we were to implement
all the properties as objects, it would be much harder to maintain a clear and
concise overview of where things are stored. This would make the job of pro-
gramming much harder and the code unreadable. While it is debatable, we make
the assumption that each of the objects that have been turned into properties
are unique for a single POI. This means that they are not reused by other POIs,
removing the absolute need to save information in separate objects. We realize
that, especially for the Point object, this assumption is radical, since multiple
POIs can be at the exact same location. For example, a museum shop is located
inside a museum, but they are both separate POIs. However, POIs that are at
the same location are not common and for the few cases in which it happens it
is possible to store their locations separately.

Besides the properties that are described in Figure 4.2, Section 4.2, we have
added another property: the unique resource identifier (URI). The URI is used
to denote a unique POI and is conform the Semantic Web, where every unique
entity is denoted by a URI. For each POI, we use the URIs that are already
present in the LinkedGeoData dataset.

7.1.2 Class
The implementation of the class object differs less from the conceptual model
than the POI. In fact, the only real difference is its name. Since Java already
uses the term class for internal purposes, it is not possible to create an object
named class. Instead we changed its name to category, which, in our eyes,
represents the same concept.

As with the POI object, we also added a URI property to the class object in
order to denote unique classes. Since we created our own OWL ontology that
contains all the classes we need, we already have these URIs available.

7.2 Testing Environments
Instead of using LarKC to evaluate the quality of different strategies, we develop
a test environment which sole goal is to run the strategies on different datasets,
in order to get a reliable and good measure of the quality of the generated
city trip plans. The main reason for developing this test environment is to
be able to effectively run a baseline. This baseline enables us to compare the
two developed strategies to the optimal and worst situation. Since we let the
baseline generate all possible sets T of a scenario set in Milan (which sums up
to 4.379.340 sets), we have to efficiently utilize the TSPTW solver, which is
the slowest component in the process. The test environment is therefore multi-
threaded, which enables it to solve multiple T-sets at the same time. In our test

70

environment we immediately write all our results to files in order to keep the
amount of memory used to a minimum.

In Section 7.2.1 we discuss the test environment that is used to actually run
the strategies and save the solutions generated by the TSPTW solver. We con-
tinue with the grading environment in Section 7.2.2. This environment utilises
the grading function as introduced in Equation 3.10 to evaluate the results ob-
tained by the test environment. We finish with the evaluation environment in
Section 7.2.3. This environment compares the results from strategies using the
chosen evaluation measure, the cumulative gain.

7.2.1 Test Environment
The main process that controls all other processes can be found in the TestEn-
vironment.java file. The other important files are the SelectionThread files,
which represent the selection strategies, and the TSPThread.java file. In order
to provide ourselves with a fast test environment, we execute each distinct main
process in a separate thread to create a multi-threaded Java process. Such a
process can take full advantage of the multi-core architecture of a testing ma-
chine.

It is hard to keep track of which Java threads are running, which is why
we channel the communication between the separate parts using a queue. The
queue is filled with T-sets by the selection strategy. Within the main program
there is a while loop that checks whether there are sets present in the queue and,
if so, it pops the first element and calls a TSP thread to execute the TSPTW
solver on this particular T-set.

The test environment requires as input the dataset, the created ontology, a
set of user preferences and a specified selection strategy. The output is a text
file, with a different plan on each line. In front of each line there is a 1 or a
0, representing whether the TSPTW solver is successful (in case of the 1) or
unsuccessful (in case of a 0). The rest of each line is an ordered sequence of
URIs where each URI represents a POI.

7.2.2 Grading Environment
The grading environment is executed after the test environment. It takes the
output of the test environment as input, grades the city trip plans and outputs
the graded city trip plans into a new file. It uses almost the same format for
its output as the test environment, but instead of a 1 or a 0, it puts the grade
of the plan in front of each line. Besides this, one can also request to sort the
output, which can be used to generate the optimal/worst solution.

The main file of the grading environment is the gradingEnvironment.java file.
This file executes the whole process ranging from reading the file to calculating
the ratings and outputting the result. The only process that is carried out by
another file is the sorting process of the results. This is done by the Sort.java
file that uses an adapted version of a merge sort implementation that was found

71

on www.codeodor.com1. We were forced to implement this peculiar sorting
method in order to avoid out of memory errors while handling the big result
files generated by the baseline strategy.

7.2.3 Evaluation Environment
The final part that completes our testing environments is the evaluation envi-
ronment. The evaluation environment takes multiple files as input where each
file contains the results from a different strategy. The evaluation environment
uses the Discounted Cumulated Gain evaluation measure (DCG) as introduced
in [29] to compare the different results.

DCG is an evaluation method originating from the field of information re-
trieval and is developed in order to credit information retrieval methods for
their ability to retrieve highly relevant documents. In our case, the information
retrieval methods are the selection strategies and the documents the city trip
plans. We will provide a more elaborate description of the discounted cumulated
gain in Section 8.1.1.

Using the results obtained by the DCG method, the evaluation method out-
puts a comma separated values file (CSV) that contains the results of this com-
parison. This CSV file can, on its turn, be used to generate the graphs that we
use in the evaluation in Section 8.2.

7.3 LarKC
As described in Section 2.2, LarKC applications consist of multiple small build-
ing blocks that are called plug-ins. In Chapter 4, one can find an extensive de-
scription of the plug-ins and their interactions. In Chapter 4 we also expressed
the desire for parallel execution one of the plug-ins. While we did succeed in
making the Test Environment execute the TSP Threads in parallel, we do not
incorporate this in the LarKC workflows.

In cooperation with our supervisor, Emanuele Della Valle, we have made
an effort in trying to figure out ways for getting parallel execution of plug-ins
working in LarKC. An e-mail discussion between our supervisor and people from
the LarKC Consortium resulted in an example, which was not fully functional.
For this reason in addition to a lack of good documentation, we are at the
moment not able to include parallel execution in the LarKC workflows.

In the remaining of this section we discuss the implementation of the plug-ins
and what problems we encountered.

7.3.1 Planning Decider
The planning decider plug-in is the core of the application, it controls the pro-
cess and prepares the execution of the city trip generation workflow, by loading

1http://www.codeodor.com/index.cfm/
2007/5/14/Re-Sorting-really-BIG-file---the-Java-source-code/1208

72

http://www.codeodor.com/index.cfm/
2007/5/14/Re-Sorting-really-BIG-file---the-Java-source-code/1208

all the needed data into the LarKC datalayer. The workflow loading the Plan-
ningDecider can be found in Figure 7.1. When the PlanningDecider is initialized,
parameters of the LarKC workflow description are read. In Figure 7.1 at line
19, one can find a parameter indicating the location of the file containing the
POI data. Line 20 represents the parameter describing which strategy to use.

1: @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2: @prefix larkc: <http://larkc.eu/schema#> .
3: @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4:
5: # Define a plug-in
6: _:PlanningDecider a <urn:eu.larkc.plugin.PlanningDecider> .
7:
8: # Define a path and set the input and output of the workflow
9: _:path a larkc:Path .

10: _:path larkc:hasInput _:PlanningDecider .
11: _:path larkc:hasOutput _:PlanningDecider .
12:
13: # Connect an endpoint to the path
14: <urn:queryendpoint> a <urn:eu.larkc.endpoint.sparql> .
15: <urn:queryendpoint> larkc:links _:path .
16:
17: # Define plug-in specific parameters
18: _:PlanningDecider larkc:hasParameter _:param .
19: _:param larkc:filePath "../data/Milan.nt" .
20: _:param larkc:strategy "RadiusStrategy" .

Figure 7.1: The workflow loading the PlanningDecider plug-in, written in No-
tation 3.

The LinkedGeoData dataset comes in the N-Triples RDF format, which is
an advantage because this makes it straightforward to load into the LarKC data
layer. The file path provided by the workflow is used to indicate which dataset to
load, one containing information about points in Milan or one with information
about points in Amsterdam. LarKC comes with a N3 parser, which is used to
load the data into the data layer at the moment plug-in is initialized.

In addition to the information concerning POIs, the PlanningDecider also
loads the user preferences. We choose to store these preferences in a single text
file that contains UC, UI as well as NUC. We choose to use files, because in
the future these files could easily be generated by a front-end according to the
preferences a user enters.

Also important is the loading and storage of the parameters that are used
throughout the application. At the moment the parameters are non customiz-
able, which means they are the same for every user and are loaded into the
datalayer in a hard-coded fashion. Of course, this is not a desirable situation,
but for the moment it is sufficient in order to prove or disprove our hypothesis.

73

Parameters that are stored in the data layer are:

• minimumLat: the minimum latitude present in the dataset.

• minimLon: the minimum longitude present in the dataset.

• startTime: the start time of plan.

• endTime: the end time of plan.

• speedMs: the travel speed in meters per second.

• desired: the desired amount of resulting plans.

• city: the city in which the application searches for plans. This parameter
is determined based on loaded dataset.

The user can also specify his or her preferred selection strategy. It is only possi-
ble to choose between the Radius or the DTR selection strategy, since running
the Baseline takes over 3 days on the Milan dataset. The Baseline will take
decades to finish on the Amsterdam dataset. Based on the parameter found
in Figure 7.1 at line 20, the PlanningDecider is able to load two distinct work-
flows: one containing the DTR strategy for point selection, the other containing
the Radius strategy as point selection method. The sequence of plug-ins of the
Radius strategy workflow, is loaded by the Notation3 workflow description of
Figure 7.2.

1: @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2: @prefix larkc: <http://larkc.eu/schema#> .
3: @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4:
5: # Define plug-ins
6: _:PointSelecter a <urn:eu.larkc.plugin.PointSelecter> .
7: _:TSPTWReasoner a <urn:eu.larkc.plugin.TSPTWReasoner> .
8: _:RankDecider a <urn:eu.larkc.plugin.RankDecider> .
9: _:Cartographer a <urn:eu.larkc.plugin.Cartographer> .

10:
11: # Define a path and set the input and output of the workflow
12: _:path a larkc:Path .
13: _:path larkc:hasInput _:PointSelecter .
14: _:path larkc:hasOutput _:Cartographer .
15: _:PointSelecter larkc:connectsTo _:TSPTWReasoner .
16: _:TSPTWReasoner larkc:connectsTo _:RankDecider .
17: _:RankDecider larkc:connectsTo _:Cartographer .

Figure 7.2: The workflow loading the plugins of the Radius workflow, written
in Notation 3.

74

After the workflow is finished and the Planning Decider receives a resulting
set of RDF statements containing the plans, it executes on these statements the
user query it received on its input and returns the results to the query endpoint.

7.3.2 Point Selecter
Because we have designed and developed two different selection strategies, we
have also created two different point selecter plug-ins. These are the Radius
Point Selecter and the DTR Point Selecter plug-ins. In this section we describe
the points that they have in common considering their implementation. The
algorithms used for finding points are discussed in depth in Section 5.

Each Point Selecter plug-in needs to interact with the LarKC datalayer in
order to function correctly. The sets UC, NUC and UI are needed in order to
be able to select POIs corresponding to the user preferences. These preferences
are retrieved using a SPARQL query. The number of desired sets is also fetched
from the datalayer, so the point selection process can continue creating sets
until the desired number is reached. A set is represented by triples including
the URIs of the selected POIs. The found sets are added to a SetOfStatements
object. Figure 7.3 depicts an example set containing four selected points.

1: @prefix lgd: <http://linkedgeodata.org/triplify/>
2: @prefix set: <set>
3:
4: set:set1 set:contains lgd:node725239190,
5: lgd:node432860311,
6: lgd:node442827340,
7: lgd:node261631356;

Figure 7.3: Representation of a set including four points, selected by a Point
Selecter.

7.3.3 TSPTW Reasoner
As stated in Chapter 4, we decide to use a TSPTW implementation developed
by Rodrigo Ferreira da Silva and Sebastian Urrutia [17]. We received the source
code from the authors, but whereas LarKC and our Test Environment are all
coded in Java, this TSPTW solver is coded in the C++ language.

C++ is a fast, platform specific language. Since solving the TSPTW problem
is a demanding process, we decide not to port the TSPTW solver to Java.
Instead we use the provided C++ implementation and compile three different
versions from the source code, a Linux version, a Mac version and a Windows
version. The Test Environment and LarKC plug-in check on which operating
system the application is currently running, before executing one of the three
programs, from within Java.

The provided TSPTW implementation uses text files as input. Since espe-
cially the baseline creates a large number of input sets, the use of files would

75

slow down the process, because of the heavy load on the file system. This is
why we decide to modify the source code, so that the information needed by the
solver can be communicated using a commandline argument, thereby bypassing
the file system.

The input text files included x and y coordinates of the points, a demand
value which was always set to 0, a ready time and due date defining the time
window and a service time. The solver requires non common units for these
properties and therefore the data of the LinkedGeoData dataset has to be con-
verted. This is done using a TSPData.java object, which stores the data of a
current set and converts it to a for the solver usable format. When the solver
finishes, a plan P is created from the stored POI data, using the order obtained
through the TSPTW solver. The resulting plans are added to the LarKC data-
layer. Each triple on the output of the TSPTW plug-in links the URI of a POI
to its position in the sequence of the plan. Figure 7.4 shows the plan resulting
from the four points of Figure 7.3.

1: @prefix lgd: <http://linkedgeodata.org/triplify/>
2: @prefix plan: <plan>
3: @prefix notExecutable: <notExecutable>
4:
5: plan:set1 plan:poi1 lgd:node442827340;
6: plan:poi2 lgd:node261631356;
7: plan:poi3 lgd:node725239190;
8: plan:poi4 lgd:node432860311.
9: plan:set2 plan:message notExecutable:timeOut

Figure 7.4: Representation of a plan including four points ordered by the
TSPTW reasoner and a second plan, for which the TSPTW solver was unable
to find a solution.

The solver is not always able to find a solution for a given set of points
T, but will keep on trying until it is stopped. In order to keep computational
resources available, we decide to stop the solver after a second. After more
then a second of trying to solve the problem, the algorithm is unlikely to find
a solution at all. At this point a triple with as predicate plan:message and
object notExecutable:timeOut is created and added to the datalayer. This triple
indicates that the solver was unable to solve this particular set.

7.3.4 Rank Decider
The Rank Decider plug-in uses Equation 3.10 to assign grades to plans P . These
plans have to be reconstructed from the datalayer, which is done using the
predicate of the triples used to indicate the sequence of the points (see Figure
7.4). For each point in the plan some properties have to be known in order to be
able to judge the plan: the class the POI belongs to, the rating, the latitude, the
longitude and the service time. This is achieved by firing a SPARQL query at

76

the datalayer for each POI, retrieving the corresponding properties. In addition
to the plans, also the user preferences, the parameters and the ontology are
loaded.

The grade which is assigned to a plan, is added to a plan.java object. The
plans are sorted using their assigned grades, using the sort method provided by
the Collections class of Java. Triples with the respective grade and rank of a
plan P are added to a SetOfStatements object and send to the Cartographer
plug-in. An example of these triples can be found in Figure 7.5.

1: @prefix lgd: <http://linkedgeodata.org/triplify/>
2: @prefix plan: <plan>
3:
4: plan:set1 plan:hasGrade "1.276146584398369";
5: plan:hasRank "2".
6: plan:set2 plan:hasGrade "1.2878256525927898";
7: plan:hasRank "1".
8: plan:set3 plan:hasGrade "1.2643784764454862";
9: plan:hasRank "3".

Figure 7.5: Representation of grades and ranks of three sets, determined by the
RankDecider.

7.3.5 Cartographer
The Cartographer plug-in creates files which can be used to display the obtained
city trip plans in a human readable format. The first file created is a GPS
Exchange Format (GPX) file. GPX files contain information about waypoints
and routes. This information can be loaded by web pages or mobile devices
and are rendered as lines, depicting a route. Figure 7.6 shows an example of a
generated GPX file, of a route in Milan.

1: <?xml version="1.0" encoding="UTF-8" ?>
2: <gpx version="1.1">
3: <trk><name>Plan#1</name>
4: <trkseg>
5: <trkpt lat="45.4913216" lon="9.2953455"><ele>0.0</ele>
6: <time>2011-11-11T11:11:01Z</time></trkpt>
7: <trkpt lat="45.456426" lon="9.1734675"><ele>0.0</ele>
8: <time>2011-11-11T11:11:02Z</time></trkpt>
9: <trkpt lat="45.4885364" lon="9.1654404"><ele>0.0</ele>

10: <time>2011-11-11T11:11:03Z</time></trkpt>
11: </trkseg>
12: </trk>
13: </gpx>

Figure 7.6: Example of a GPX file representing a route of three points in Milan.

77

At the moment the Cartographer adds points to the GPX files, which de-
scribe straight lines from one POI to the next. In the future, routing mechanisms
could be used to add more waypoints, thereby providing users with more de-
tailed info. The point of interest data we use does not include the elevation of
the points, which is why we set the <ele> element of the GPX file to 0.0. The
TSPTW Reasoner outputs only the sequence of POIs, not the related time infor-
mation. For this reason we use fictive time elements, which retain the sequence
information of the city plan generated by the system.

The second file is a text file containing information about the points of
interest included in the city plan. The values include a short description and
the label of the POI. This data is used to enrich the information displayed on
the OpenStreetMaps depiction of the route.

78

Chapter 8

Evaluation

In this chapter we evaluate the city trip planner and the developed selection
strategies using the test environments and the LarKC application. We perform
multiple experiments in order to evaluate the performance levels.

As described in Chapter 6, we evaluate the strategies on two different urban
environments: Amsterdam and Milan. Where the Milan dataset contains only
70 POIs, the Amsterdam dataset contains 667 POIs. As a consequence, much
more possible solutions can be found in the Amsterdam environment than in the
Milan environment. In table 8.1, one can find the number of possible sets for
the two datasets given a maximum number of points in a T-set (upper bound)
of 8.

dataset # of Possibilities
Milan 4.379.340
Amsterdam over 75 · 109

Table 8.1: Amount of possible sets with an upper bound of 8.

We cannot execute the baseline selection strategy on the Amsterdam dataset,
because of its size. Given the fact that the upper bound is set to 8 and consider-
ing the tourist scenario introduced in Section 3.1, the Baseline takes around 39
hours to complete on the Milan dataset. Using these numbers, we can roughly
calculate that the Baseline would take over 75 years to complete on the Ams-
terdam. This makes it impossible for us to run the Baseline on the Amsterdam
dataset within our current time-frame, leaving us without an ideal situation to
compare our strategies with on this dataset. However, the experiments on this
dataset are still worthwhile, because results can indicate that a suitable plan can
be found within a short period of time, given the fact that there is an extreme
amount of possible solutions.

In Section 8.1 we describe the method of evaluation by discussing the used
evaluation measure and the experimental setup. We present the results of these
experiments in Section 8.2.

79

8.1 Method
In this section we describe the method of evaluation. We start in Section 8.1.1
by elaborating on the evaluation measure we use, which is the Cumulated Gain.
Next, we discuss the minimal performance we have to obtain in order to confirm
the hypothesis in Section 8.1.2. Finally, we discuss the different settings for the
experiments in Section 8.1.3.

8.1.1 Cumulated Gain
In order to evaluate the results from the experiments, we use the Discounted
Cumulated Gain (DCG) method. DCG originates from the field of Information
Retrieval and is based upon two principles [29]:

• Highly relevant documents are more valuable than marginally relevant
documents.

• The greater the ranked position of a relevant document, the less valuable
it is for the user, because it is less likely that the user will ever examine
the document.

In order to apply this evaluation method to our experiments we have to
view the problem as an information retrieval problem. This means that the
selection strategies can be seen as strategies that select plans from a finite set of
possibilities and plans can be seen as documents. This is not a problem, since
an urban environment with a finite set of POIs always has a finite set of possible
day plannings, even though this number can be very high. DCG uses a ranked
list as a basis for the evaluation, where the order of the ranked list represents
the order in which the plans are found.

The first principle can be rewritten to the following: highly rated plans are
more valuable than low rated plans. In the Cumulated Gain (CG) evaluation
method, the rating of each plan is used as a gained value measure for its ranked
position in the result list. Based on this principle the general cumulated gain
method is formulated in Equation 8.1:

CGi =

{
G1 if i = 1
CGi−1 +Gi otherwise (8.1)

The second principle can be rewritten to the following: the greater the ranked
position of a relevant plan, the less valuable it is for the user, because it is less
likely the user will ever look at the plan. This means that the greater the rank of
a plan, the smaller the share of the rating of the plan is added to the cumulated
gain. Based on these two principles, the Discounted Cumulated Gain of a plan
i is formulated in Equation 8.2:

DCGi =

{
CGi if i < b
DCGi−1 +Gi/

blogi if i ≥ b (8.2)

80

The DCG is the main measure we use, but since we have an ideal situation
on the Milan experiment, we can use a measure that judges the different strate-
gies relatively to the ideal situation. This measure is called the Normalized
Discounted Cumulated Gain (nDCG) and is calculated by dividing the DCGi

value of a strategy with the DCGi of the ideal situation.

8.1.2 Success Criteria
Based on the hypothesis “The LarKC platform is able to generate 10 city trip
plans of good quality within a minute, using strategies for selecting points of
interest from the web of data combined with a TSPTW solver” we can formulate
the success criteria as following:

• The developed strategies should be able to generate 10 city trip plans in
less than a minute.

• The 10 city trip plans should be of good quality, meaning that the dis-
counted cumulated gain after 10 plans should be closer to the optimal
situation than to the worst situation.

The first point is an evaluation based on execution time. The execution
time of the application is very important. Since finding the best solution using
a baseline strategy takes two days on the Milan dataset and more than a few
decades on the Amsterdam dataset, a lot of progress can be gained in this area.
If we are able to find 10 plans within a minute we make sure that the speed of
the application is satisfactory. In general, users want to see results very fast,
but also like the opportunity to still have a choice, hence the 10 plans within a
minute.

The second point is an evaluation based on quality. Execution time is im-
portant, but finding 10 plans within a minute that are of poor quality is not
a desirable result. However, judging the quality of the plans is hard, because
no related work has been done using selection strategies similar to ours. This
means that the only possibility is comparing the results of the 2 strategies with
each other and, on the experiments on the Milan dataset, with the optimal situ-
ation and the worst situation. We consider ourselves to be successful in the case
where the DCG results after 10 found plans lie closer to the optimal solution
than to the worst situation.

8.1.3 Experimental Settings
Here we discuss the different experiments that we perform on the two urban
environments. We start by describing the experiments that are performed on
the Milan dataset.

Milan
On the Milan dataset we run 3 different experiments. The first experiment is
to either confirm or reject the execution time part of the hypothesis. We run

81

the strategies using the LarKC application until they have retrieved 10 plans
and measure the time it takes to do this. Because measuring execution time is
highly variable due to all sorts of processes that can interfere with the execution
of the application, the experiment is run 10 times in order to be able to make
valid conclusions. The independent variable we use is the selected strategy and
the dependent variable is the execution time. The upper bound (maximum
length of a plan) is set to 8, because this is a reasonable amount of POIs that
can be visited in the current time window of 10 hours. For this experiment the
following setup is used:

Apple Macbook pro 13"
Intel Core2Duo 2.4 GHz
4GB 1067MHz DDR3
Mac OS X 10.6 (Snow Leopard)

Because of earlier mentioned reasons in Chapter 7, we run the quality ex-
periments using the developed test environments. After generating 10 plans,
we calculate the DCG of both strategies as described in Section 8.1.1 and com-
pare these results with the DCG of the optimal 10 plans and the worst 10 plans.
Again, the selected strategy is the independent variable and the dependent vari-
able is the DCG of the resulting plans. Using this experiment we can confirm
or disprove the quality statement of the hypothesis. This experiment is run on
the following setup:

Intel Quad Core 2.4GHz
2GB DDR3
Debian GNU/Linux 6.0

The experiments concerning quality are executed on a different setup, because
of the excessive amount of time it takes to run a baseline. Therefore, a server
machine running Linux equipped with four CPU cores was used in order to
speed up the process.

In order to measure the performance of the strategies on the long term
we perform a third experiment by letting the strategies retrieve 200 plans and
compare the resulting DCG measures with the optimal and worst situation.

All quality experiments are run with the constants Keagerness and Klaziness

set to 1. The travel speed is set to 30 kilometers per hour. Another logical
choice would have been to set it to walking speed (around 5 km/h), but we
assume that tourists also take public transport to get around.

Amsterdam
On the Amsterdam dataset we perform the same three experiments. In this case
we remove the upper bound of 8 in order to give the DTR selection strategy the
chance to determine this intelligently. The results of the experiment concerning
the plan quality are less useful, since we cannot calculate the optimal situation
and the worst situation. This is why the experiment cannot be used for con-
firming or rejecting the quality statement of the hypothesis. However, since the

82

Amsterdam dataset is a much more extensive dataset, it is very useful to see if
the strategies are still able to produce results quickly.

8.2 Results
In this section we present the results of the experiments. We start by presenting
the results of the experiments concerning the execution time in Section 8.2.1 and
continue by presenting the results concerning the quality of the retrieved plans
in Section 8.2.2. Section 8.2.3 contains an in-depth analysis of the best results
obtained by the city trip planner.

8.2.1 Results Of The Execution Time Experiments
In figure 8.1 one can find the results from the execution time experiments in the
form of a box-and-whisker plot. Here we can see that the results are close to
each other. The execution time for running the city trip planner on the Milan
dataset are similar for both strategies. However, on the Amsterdam dataset the
result of running the city trip planner with the DTR selection provides more
variable results, including some high outliers. We have enlisted the standard
deviation and the mean of each experiment in Table 8.2.

0

2000

4000

6000

8000

10000

12000

14000

16000

Radius
Milan

Radius
Amsterdam

DTR
Milan

DTR
Amsterdam

E
xe
cu
ti
on

T
im

e
10

P
la
n
s
(m

il
li
se
co
n
d
s)

Quartiles

Figure 8.1: Box-and-whisker plot of 10 LarKC executions generating 10 plans.
Bottom whisker is the fastest run, top whisker is the slowest run and the bar in
the box is the median.

83

DTR Radius
mean std. dev. mean std. dev.

Milan 8789.7 ms 785.45 ms 8502.1 ms 774.49 ms
Amsterdam 10933 ms 1843.47 ms 9483.4 ms 589.51 ms

Table 8.2: The mean and standard deviation of each experiment.

In order to be able to draw conclusions from our results we run a factorial
ANOVA statistical test, where we have the two independent variables dataset
and selection strategy and the dependent variable execution time. For the main
effects, which are the effects of the dataset variable and the strategy, the degree
of freedom is 1. For the interaction effect, dataset * strategy, the degree of
freedom is also 1. For all effects, the degrees of freedom for the residuals are 36.
We can, therefore, report the three effects from this analysis as follows:

• There was a significant main effect of the chosen dataset on the total time
the city trip planner was running,
F (1,36) = 6.081, p<0.05.

• There was a significant main effect of the strategy chosen for selecting
POIs on the total time the city trip planner was running,
F (1,36) = 19.673, p<0.01.

• There was not a significant interaction effect between the strategy se-
lected and the dataset selected, on the the total time the city trip planner
was running, F (1,36) = 2.721, p=0.108. This indicates that the DTR
strategy as well as the Radius strategy are not proven to be reacting
differently on the dataset chosen. Specifically, the execution time in mil-
liseconds was similar for DTR (M=8789.70, SD=785.453) and Radius
(M=8502, SD=774.491) on the Milan dataset; the execution time in mil-
liseconds was higher for DTR (M=10933.00, SD=1834.47) than for Radius
(M=9483.40, SD=589.508), but proved to be insignificant.

8.2.2 Results Of The Quality Experiments
When looking at the results in Figure 8.2, one can see that running the city trip
planner with either one of the strategies produces similar results, where running
it with the Radius strategy seems to perform a little better. In this graph we
can also see that the results from both strategies are much closer to the optimal
situation than to the worst possible situation.

In Figure 8.3 one can find the normalized discounted cumulated gain results.
Here we can see that both strategies lead to results very close to the optimal situ-
ation. We run an independent t-test using the normalized discounted cumulated
gain results in order to be able to conclude whether the city trip planner running
one strategy performs significantly better than running it with the other. From
the t-test that runs with range 10 we can conclude that on average, the city trip
planner running with the Radius selection strategy performs significantly better

84

(M=0.949849580, SE=0.001711546) than running it with the DTR selection
strategy (M=0.938511729, SE=0.003969151, t(9)=-8.295, p<0.01)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

D
C
G

Rank

Baseline

N

N

N

N

N
N

N
N

N
N

N
N

Worst

H

H

H
H

H
H

H
H

H
H

H

H
Radius

◦

◦

◦

◦
◦

◦
◦

◦
◦

◦
◦◦

DTR

×

×

×

×
×

×
×

×
×

×
×

×

Figure 8.2: The discounted cumulated gain curves for the different selection
strategies in relation to the optimal situation (baseline) and the worst possible
situation (worst) on the dataset of Milan with range 10.

0.93

0.935

0.94

0.945

0.95

0.955

1 2 3 4 5 6 7 8 9 10

n
D
C
G

Rank

Radius

◦

◦
◦ ◦

◦ ◦
◦

◦ ◦ ◦
◦

DTR

×

× ×

×
×

×

× × ×
×

×

Figure 8.3: The normalized discounted cumulated gain curves for the different
selection strategies on the dataset of Milan with range 10.

85

In Figure 8.4 one can find the performance of running the city trip planner
with the different strategies on the long term. Here we can see that the results for
both strategies are, again, very close to each other and also close to the optimal
situation. However, on the long term it looks like the difference between the
DCG of the optimal situation and the strategies seems to increase a little.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

D
C
G

Rank

Baseline

N

N

N

N

N

N
N

N
N

N
NN

Worst

H

H

H
H

H
H

H
H

H
H

H

H
Radius

◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

DTR

×

×

×
×

×
×

×
×

×
×

×

×

Figure 8.4: The discounted cumulated gain curves for the different selection
strategies in relation to the optimal situation (baseline) and the worst possible
situation (worst) on the dataset of Milan with range 200.

0.935

0.94

0.945

0.95

0.955

0.96

20 40 60 80 100 120 140 160 180 200

n
D
C
G

Rank

Radius

◦

◦
◦ ◦

◦

◦

◦
◦

◦
◦ ◦

◦
DTR

×

×

×
×

×
× ×

×
×

×
×

×

Figure 8.5: The normalized discounted cumulated gain curves for the different
selection strategies on the dataset of Milan with range 200.

This can also be seen in Figure 8.5, where the normailzed DCG steadily
decreases as more plans are generated. For these results we also run an inde-
pendent t-test to be able to conclude whether running the city trip planner with
one of the strategies performs better than running it with the other strategy on
the long haul. From the t-test that runs with range 200 we can conclude that on
average, the city trip planner run with the Radius selection strategy also per-
forms significantly better (M=0.952631955, SE=0.000330793) than running it
with the DTR selection strategy (M=0.947008774, SE=0.000287033, t(199)=-
12.839, p<0.01)

In Figure 8.6 one can see the performance of running the city trip planner
on the Amsterdam dataset for both strategies. Where in the Milan experiment
the city trip planner running the radius strategy outperformed the one running
the DTR strategy, the roles are now reversed. Since there is no optimal and
no worst possible situation, we cannot draw hard conclusions about the quality
of the performance, but when looking at the absolute numbers of the DCG, we
can definitely see that plans found using the DTR selection strategy get a little
higher grades than the plans found using the Radius strategy.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

D
C
G

Rank

Radius

◦

◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
DTR

×

×

×

×
×

×
×

×
×

×
××

Figure 8.6: The discounted cumulated gain curves for the different selection
strategies on the dataset of Amsterdam with range 10.

In Figure 8.7 we can see the performance on the Amsterdam data for 200
plans. Again we cannot draw hard conclusions, but also on the long haul running
the city trip planner with the DTR strategy seems to produce better results.

87

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

D
C
G

Rank

Radius

◦◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦◦
DTR

××

×

×
×

×
×

×
×

×
×

×
×

Figure 8.7: The discounted cumulated gain curves for the different selection
strategies on the dataset of Amsterdam with range 200

88

8.2.3 Resulting City Trip Plans
In this section we discuss the content of the plans resulting from using the
different strategies. For both datasets we discuss the first found plan by the
Radius selection strategy as well as the first plan found by the DTR selection
strategy. On the Milan dataset we also discuss the best possible plan, resulting
from the sorted baseline strategy.

City trip plans Milan
In Figure 8.8 one can find the best possible plan of the Milan dataset. Each
marker represents a selected POI and the number inside the marker shows the
order in which the POIs are visited. The start point is denoted by a marker
without a number. Each path between two POIs is represented by a straight
line, since the euclidian distance was used to measure the distance between two
POIs.

In order to check whether this plan is actually a good plan we provide the
data of the POIs in table 8.3. From this table we can see that POIs that are
selected all have a rating above 0.7 and that the POIs with later time windows
are also visited later. However, POI number 6 shows an impossible situation.
While it starts at 18:30, the visit of this restaurant lasts 94 minutes, meaning
that the earliest possible time a tourist is supposed to leave this restaurant is
at 20:04. Leaving at this time makes visiting Zucca in galleria and Monumento
a Vittorio Emanuele impossible. We elaborate on this problem in Section 9.3 of
the discussion.

In Figure 8.9 one can find the visual representation of the first found plan by
the DTR strategy on the Milan dataset. From this map and Table 8.4 we observe
that most of the ratings of the POIs that are selected by the DTR strategy are
higher than the ones from the best possible plan. However, the duration of the
visits from the best possible plan are much longer, which influences the grade
in a positive manner.

In Figure 8.10 the first found plan of the Radius strategy on the Milan dataset
can be found. The first thing that catches the eye is the distance between the
POIs. In comparison with the DTR and the best found plan, the POIs found
by the Radius strategy are much closer to each other.

However, as can be seen in Table 8.5, the ratings are lower. Even though
the ratings are high in general, the first and last POI selected have a much
lower rating in comparison to the other POIs. Another notable thing is the
fact that the last POI has no label, which illustrates the sometimes incomplete
information of the LinkedGeoData dataset.

As with the best plan found on the Milan dataset, this plan also suffers from
the fact that it is impossible to execute. Again, Ristorante Savini is set at the
sixth position, which makes it impossible to visit Zucca in galleria and the last
POI.

89

Figure 8.8: The map representing the best plan that can be found on the dataset
of Milan, where each pointer represents a POI that is visited and the numbers
in the marker represent the order in which the POIs are visited.

Order Name Rating Time Window Duration
1 Beit Shlomo 0.887 10:00 - 17:00 33
2 Museo del Risorgimento 0.712 10:00 - 16:00 92
3 Museo Poldi Pezzoli 0.764 10:00 - 16:00 90
4 Pinacoteca di Brera 0.801 10:00 - 16:00 100
5 S. Maria del Podone 0.749 10:00 - 17:00 39
6 Ristorante Savini 0.833 18:30 - 22:00 94
7 Zucca in Galleria 0.892 7:00 - 20:00 24
8 Monum. Vitt. Emanuele 0.874 8:00 - 20:00 22

Table 8.3: POI information for the best Milan plan.

90

Figure 8.9: The map representing the first plan found by the DTR strategy on
the dataset of Milan, where each pointer represents a POI that is visited and
the number in the marker represent the order in which the POIs are visited.

Order Name Rating Time Window Duration
1 Sans Egal 0.934 7:00 - 20:00 20
2 S. Maria del Podone 0.749 10:00 - 17:00 39
3 Monum. Vitt. Emanuele 0.874 8:00 - 20:00 22
4 Café Victoria 0.863 7:00 - 20:00 39
5 S. Maria del Podone 0.749 10:00 - 17:00 39
6 Zucca in Galleria 0.892 7:00 - 20:00 24
7 Beit Shlomo 0.887 10:00 - 17:00 33
8 Ristorante Savini 0.833 18:30 - 22:00 94

Table 8.4: POI information for the first found DTR plan on Milan.

91

Figure 8.10: The map representing the first plan found by the Radius strategy
on the dataset of Milan, where each pointer represents a POI that is visited and
the numbers in the marker represent the order in which the POIs are visited.

Order Name Rating Time Window Duration
1 Grom 0.698 10:00 - 20:00 20
2 Beit Shlomo 0.887 10:00 - 17:00 33
3 Monum. Vitt. Emanuele 0.874 8:00 - 20:00 22
4 S. Maria del Podone 0.749 10:00 - 17:00 39
5 Café Victoria 0.863 7:00 - 20:00 39
6 Ristorante Savini 0.833 18:30 - 22:00 94
7 Zucca in Galleria 0.892 7:00 - 20:00 24
8 - 0.625 8:00 - 20:00 19

Table 8.5: POI information for the first found Radius plan on Milan.

92

City trip plans Amsterdam
In Figure 8.11 one can find the visual representation of the first found plan by
the DTR strategy on the dataset of Amsterdam. From this map and Table 8.6
we observe that most of the ratings of the POIs that are selected by the DTR
strategy are above 0.9. When we look at the route, the tourist is send all the
way through the city and back. However, this makes sense when looking at the
time windows, since the restaurant Nam Kee cannot be visited before 18:30 and
the last two POIs cannot be visited before 21:00. Another thing that catches
the eye is the length of the plan. The plan only contains 7 POIs, which can
happen due to the variable upper bound of the DTR strategy on the Amsterdam
dataset.

In Figure 8.12 one can find the visual representation of the first found plan
by the Radius strategy on the Amsterdam dataset. Again we can see that the
POIs are much closer to each other than in the plan resulting from the DTR
strategy. However, from Table 8.7 we can see that also in this case, the ratings
of the plan resulting from the Radius strategy are a little lower and the duration
of the POIs are also a little shorter than is the case with the DTR strategy.

93

Figure 8.11: The map representing the first plan found by the DTR strategy on
the dataset of Amsterdam, where each pointer represents a POI that is visited
and the numbers in the marker represent the order in which the POIs are visited.

Order Name Rating Time Window Duration
1 Theo Thijssen monument 0.953 8:00 - 20:00 21
2 Noorderkerk 0.862 8:00 - 20:00 40
3 Portugees-Israelitische gem. 0.861 10:00 - 17:00 34
4 Nam Kee 0.749 18:30 - 22:00 95
5 Nationaal Monument 0.988 8:00 - 22:00 22
6 Wynand Fockink 0.993 21:00 - 23:59 95
7 De Vriendschap 0.892 21:00 -23:59 00 92

Table 8.6: POI information for the first found DTR plan on Amsterdam.

94

Figure 8.12: The map representing the first plan found by the Radius strategy
on the dataset of Amsterdam, where each pointer represents a POI that is
visited and the numbers in the marker represent the order in which the POIs
are visited.

Order Name Rating Time Window Duration
1 Waalse kerk 0.759 10:00 - 17:00 36
2 Coffee Company 0.873 7:00 - 20:00 25
3 Oude Lutherse Kerk 0.757 10:00 - 17:00 39
4 Kantjil ed Tijger 0.941 18:30 - 22:00 94
5 Nationaal Monument 0.988 8:00 - 22:00 22
6 Staalmeersters 0.946 21:00 - 23:59 100
7 Cooldown Café 0.925 23:00 - 23:59 34
8 Studio 80 0.859 23:00 - 23:59 39

Table 8.7: POI information for the first found Radius plan on Amsterdam.

95

Chapter 9

Discussion & Future Work

This chapter discusses the results of the experiments. In Section 9.1, the re-
sults of the speed experiment are discussed. We continue with the results of
the quality experiment in Section 9.2. Since some plans that were constructed
during the experiments violated time constraints, we discuss the quality of the
TSPTW solver in Section 9.3. The whole process of developing the city trip
planner has been done keeping the theoretical aspects of the Semantic Web in
mind. We discuss conformity to the Semantic Web in Section 9.4. We conclude
this chapter with Section 9.5, containing possible improvements and additions.

9.1 Execution Time Experiment
The success criterion considering time was stated in Section 8.1.2 as: The de-
veloped strategies should be able to generate 10 city trip plans in less than a
minute. As can be seen in Figure 8.1, both strategies clearly pass this criterion,
none of the 40 executions of the city trip planning process in LarKC surpasses
the fifteen seconds.

As discussed in the Section 6, the Amsterdam dataset comprises many more
points of interest than the Milan dataset. The POI data has to be loaded in
the LarKC datalayer and significant parts of it have to be retrieved by the plug-
ins. At some points, the strategies check every point of interest available in the
datalayer. For example, the DTR strategy loads all of them in lists. For this
reason, it takes more time when there are more POIs in a dataset. As a result of
this, a significant faster execution of the application was achieved on the Milan
dataset, than on the larger Amsterdam dataset.

Overall, the application including the Radius strategy is significantly faster
than the one with the DTR strategy. Further analysis of the results points to an
interaction effect on the strategies when the datasets are alternated. Using the
DTR strategy seems to result in a higher increase of execution time when we
switch from the Milan to the Amsterdam dataset than when using the Radius
strategy for point selection. Although it did not prove significant, there could be

96

a reason for this observation. The DTR strategy has a method for dynamically
adjusting the amount of points included in a set, which could lead to surpassing
the upperbound. Including more points in the T-set will result in a TSPTW
problem which is harder to solve and thus will take more time.

The standard deviation of the experiment using the DTR strategy on the
Amsterdam dataset is larger than the standard deviations of the three other
experiments. The DTR strategy produces the exact same T-sets each execution,
so the probable cause of this increase of the standard deviation is the TSPTW
solver. The used TSPTW solver implementation has random elements, it starts
with a random plan and keeps improving this. Although most of the time this
results in the optimal route, the amount of passed time to get to this solution
may differ due to the randomness, especially when the T-sets contain more
points.

9.2 Quality Experiments
The success criterion concerning the quality of the city trip plans was stated in
Section 8.1.2 as: The 10 city trip plans should be of good quality, meaning that
the results should be closer to the optimal situation than to the worst situation.
This success criterion can only be evaluated on the Milan dataset. It is not
possible to run a complete baseline on the Amsterdam dataset because of the
time it will take to complete. Visual inspection of The Cumulated Gain graphs
show that both strategies are closer to the optimal curve than the worst curve,
so the quality criterion is met by both strategies.

Another observation made in Section 8.2 concerns the performance of the
city trip planner given a certain selection strategy. On the Milan dataset, the
DTR strategy is outperformed by the Radius selection strategy, while on the
Amsterdam dataset it is the other way round. On the Milan dataset we prove
that the performance of the Radius strategy was significantly better, where on
the Amsterdam dataset there is no way of proving whether the difference is
significant, due to a lacking baseline.

As observed in Section 8.2.2, the grades obtained by the strategies are very
close to each other. Nevertheless, an in-depth analysis of the resulting plans in
Section 8.2.3 show some differences. The POIs of the best plans of the Baseline
have, on average, a lower rating than the POIs selected by the two strategies,
but the time spent at those POIs is higher. As stated in Section 3.3, the service
time is taken into account by the grading function. Plans containing POIs with
higher service times will obtain higher overall grades than plans containing POIs
with lower service times, while they might contain the same amount of POIs
with similar ratings. For this reason, selecting POIs with longer service times
will lead to a higher overall grade.

While the Radius strategy did not take the notion of service times into
account, the DTR strategy did, but indirectly. As described in Section 5.2, the
DTR strategy adjusts its upper bound according to the sum of the service times
of all POIs currently in the selected set, in combination with an estimation

97

of the the time needed for adding another POI. By doing this, the strategy
does take notion of service times, which can be seen reflected in practice by the
Amsterdam plan which contains only 7 POIs instead of the normal amount of 8.
At the Milan dataset the strategy is still limited to selecting at most 8 points,
otherwise it would not be possible to compare the strategy with the results of
the Baseline.

Both strategies select points based on rating and distance. Besides the ser-
vice time, temporal aspects are disregarded. This will become a problem when
multiple points of interest have small time windows. Although the selected
points might be close to each other, it is not possible to visit them in the opti-
mal sequence due to the time restrictions imposed by the specified time windows.
As can be seen in Section 8.2.3, for this reason some of the routes take rather
strange detours. As a result of not considering the time windows, sometimes
the travel distance will increase.

Overall the quality of the plans is very good. The routes makes sense when
considering the time windows, but some of the plans are invalid. This is due
to the quality of the TSPTW solver, on which we will elaborate in the next
section.

9.3 Quality TSPTW Solver
The only plug-in not solely designed and implemented by ourselves is the TSPTW
Reasoner, which utilizes the code of a Traveling Salesman Problem with Time
Windows solver, provided by Rodrigo Ferreira da Silva and Sebastian Urrutia.
This C++ solver is very fast, it enables us to generate many city trip plans in
a short period of time. However, over time, some irregularities concerning the
quality of the solutions occurred.

The solver does not guarantee to find the optimal solution, but the article
describing the solver made clear that the overall solutions where of good qual-
ity [17]. When one runs the LarKC implementation multiple times, the grades
of the plans will not be constant, although the point selection strategies produce
the same sets over and over again. Each run, the grades obtained by the plans
are slightly different, with variations in the range of [0 - 0.03]. Still, the high
ranking plans will consequently be high ranking, but it does indicate variability
in the outputted solutions by the TSPTW solver.

After close inspection of multiple text files containing the results, this ap-
pears to be indeed the case. Although in many cases the results do differ, similar
sequences of POIs can still be distinguished. The occurrence of variation in the
output is not so strange considering the random elements of the TSPTW solver.
As mentioned in Section 2.3.2, the TSPTW starts with a random generated so-
lution and uses heuristics to improve the solution.

A more severe problem came to light while describing the best plans in
Section 8.2.3. Every POI has a time window and a service time. The test files
used to evaluate the solver in [17] all had a service time of 0. Before using the
implementation we manipulated these values and the results changed, leading to

98

the conclusion that service times were considered by the solver. While analyzing
the resulting plans, some of them appeared to be invalid, because a tourist would
not be able to reach the next POI in time, considering the service time of the
current POI. This points to incorrect handling of service times by the solver.

Although we are Rodrigo Ferreira da Silva and Sebastian Urrutia very grate-
ful for sending us the source code of their TSPTW solver, we believe that their
implementation could be improved. The period of time needed to find a solution
is short, but the solutions are of varying quality. The use of the LarKC platform
for our application is a good choice. In case a more reliable solver is found, it
can easily be switched with the current one, through workflow manipulation.

9.4 Conformation to The Semantic Web
The application is developed while keeping the theoretical aspects of the Se-
mantic Web into mind. One of these aspects is the open world assumption.
For practical purposes we, however, choose to consider two POI classes to be
disjoint. When at a certain point the dataset contains points with two different
classes, these are two different POIs. The Rijksmuseum is, for example, a mu-
seum in Amsterdam, which is located inside a historic building. This will result
in a historicBuilding POI and a museum POI. When a POI could have had
multiple classes, this would have created problems concerning the time related
concepts, the rating and deciding whether to include the POI in the plan P .

The time and rating will be different depending on the class of a POI. You
can walk around the Rijksmuseum all day (a = 7:00, b = 22:00) but the museum
inside will have a different time window (a = 9:00, b = 18:00). It also takes
less time to admire the building (d = 15 minutes), than visiting the museum
(d = 120 minutes). The rating might also be different, one aspect of the point
could be more appreciated than the other.

During the point selection process, problems would occur if classes were not
disjoint. If a tourist indicates, using the NUC, that one class is not preferred
and the tourist would still like to visit other things (which is hopefully the
case), this could lead to a contradiction. For example, a tourist expressing the
preference to not visit museums and the preference to visit historic buildings,
would lead to a contradiction in case of the earlier Rijksmuseum example. In
the future, a shift from the POI concept to the notion of an activity, could solve
this problem. We could then state that multiple activities can take place at the
POI Rijksmuseum.

9.5 Future Work
In this section we present several points on which improvements can be made
alongside possible additions and extensions to the to the currently implemented
city trip planner.

As discussed in Section 9.3, the results generated by theTSPTW solver are

99

of varying quality. Using a more stable, or even a TSPTW algorithm guarantee-
ing the generation of the optimal solution, would greatly improve the stability
of the results obtained by the city trip planning process. This could be done
by modifying the current solver, developing our own TSPTW solver or finding
a new solver.

A point of possible improvement is the POI information provision. Cur-
rently, the city trip planner provides basic information for all the POIs in the
resulting plan such as name, location, time related information and rating. We
could enhance the experience of using our application by providing additional
information such as pictures or a Wikipedia description. This could be achieved
by developing a separate LarKC plug-in that obtains the information, given the
URIs of the POIs in the selected set.

Besides enriching the information of the POIs, the amount of considered
POIs could be increased by incorporating additional data sources. As
described in Section 6.1, we use LinkedGeoData as our only data source. In
Section 6.4 we analyzed the data and concluded that the LinkedGeoData dataset
was far from complete. In the case of Milan, very important POIs were missing.
In Section 6.1, we also discussed the complications of incorporating multiple
data sources. Still, the data of the application needs improving in order to
provide our users with the best plans possible and the best way of doing this is
by incorporating multiple data sources. Examples of data sources which could
be a valuable addition are DBPedia, FourSquare and Booking.com.

Furthermore, a major point that can be improved is the procedure which is
used to assign ratings to POIs. Currently the ratings of a POIs are entered
manually, based on looking them up on websites such as TripAdvisor and Book-
ing.com. By automatically determining these grades, we can save ourselves lots
of manual labor. Another advantage of using an automated grading system, is
that we can incorporate as many sources as we want. Also, ratings of POIs are
subject to change. For example, the quality of restaurant can deteriorate or the
current collection of a museum can be of less quality than a previous one. Auto-
matic rating determination can handle these changes by, for example, modifying
the ratings of POIs once in a while, by taking new reviews into account.

Even though the selection strategies performed well and confirmed the hy-
pothesis, they can be improved at some points. As stated in Section 9.2, both
strategies do not take all the temporal aspects of POIs into account. The DTR
strategy selects POIs until it is unlikely that adding another POI will result in
a solvable set, due to the sum of service times of the already selected POIs. The
Radius strategy could be extended with such a construction. Also, the consider-
ation of time windows through preferring POIs with partially overlapping time
windows could prevent undesired detours.

Major headway can also be made in the area of routing. The current
version of the city trip planner does routing based on euclidean distance, mean-
ing that it draws straight lines between POIs. If we were to include actual
routing algorithms, this would be a major improvement in the usability of the
application. One way of doing this, is by using the Traveling Salemsan Ap-

100

plication1, which contains a Java library that accomplishes routing based on
OpenStreetMap data.

Nowadays, many tourists are in the possession of a smartphone. By creating
a mobile version of the city trip planner, a much larger audience can be
addressed. The usability would greatly improve, rerouting could take place
on the fly and tourists could use GPS to determine their position relative to
the POIs. The scenario sketched in Section 3.1 already includes the notion
of a mobile application and we believe our application is suitable for such a
transformation.

Even though the computation performed by the selection strategies is inten-
sive, smartphones should be able to handle this. The processors of the current
smartphones are fast and with normal use of the application, they will have to
generate no more than 10 plans. This is reached by our dual core setup within
15 seconds and should not take more than a minute using a state of the art
smartphone containing a CPU of around 1GHz.

As described in Section 2.5, many applications developed for assisting tourists,
require an Internet connection to function. This will not hold for our applica-
tion. Our datasets can easily be stored on the mobile device, since the files are
really small: the Milan dataset is 147Kb and the Amsterdam dataset is 1.5Mb.

In the future, a modified version of the application could also be applied
in other areas than city trip planning or even tourism. For example, the
system could be applied in museums. Here, the displayed objects would serve
as POIs. In this case UI contains art objects a user definitely wants to visit.
UC contains the kind of art objects a user certainly wants to visit. One can
think of renaissance paintings as an example. NUC would contain the kind of
art objects the user does not want to visit, for example, sculptures. The result
would be the order in which to visit the art objects along with a route.

Another example is disaster management. In a disaster scenario, the people
in need of help would be the POIs and the result the order in which to visit
these people to give them help or food. In this case priorities can be given to
certain people or areas by putting them in UI. UC and NUC would be less
useful, or even discriminating.

1http://wiki.openstreetmap.org/wiki/Traveling_Salesman

101

http://wiki.openstreetmap.org/wiki/Traveling_Salesman

Chapter 10

Conclusion

This master thesis revolves around the process of planning a city trip. In the in-
troduction three research questions were formulated. The first research question
was stated as: How can we effectively select a set of points of interest which will
result in a good city trip plan? Two point selection strategies were developed
in order to select appropriate POIs for tourists from a data set: the Distance
Times Rating strategy (DTR) and the Radius strategy. The DTR strategy uti-
lizes ordered lists that are constantly updated while the Radius strategy selects
highly rated POIs within a circle with a continuously expanding radius.

After multiple sets of points were selected, a TSPTW solver was used to find
the shortest route visiting all the selected POIs in a set while considering time
windows and service times. The resulting city trip plans were evaluated and
assigned a grade, which enabled the ranking of the plans. The best plans were
presented to the user on a map, displaying the sequence of the to be visited
points.

The functionalities mentioned above were implemented by the following
LarKC plug-ins: the DTR Point Selecter, the Radius Point Selecter, the TSPTW
Reasoner, the Rank Decider and the Cartographer. A Planning Decider was
used to conduct and control the overall process.

The second research question considers the data needed by the application
to function correctly: Which datasets do we use for the extraction of points of
interest and how to structure this data? We chose to use one dataset, because
using multiple datasets would most probably entail complex instance matching.
The utilized Semantic Web data originates from the LinkedGeoData project,
which is an abstraction of the OpenStreetMap project. A separate dataset was
created for points in Milan and points in Amsterdam. A taxonomy of classes
was developed to structure the data.

The third and final research questions is concerned with the manner of eval-
uating the city trip plannings: How to evaluate the quality of a city trip plan?
A grading function was introduced, which considers the ratings of the selected
POIs, the time spent at the POIs, whether the POIs match the user preferences
and the amount of time needed for travelling between the POIs.

102

In order to confirm or reject the hypothesis “The LarKC platform is able to
generate 10 city trip plans of good quality in less than a minute, using strategies
for selecting points of interest from the web of data combined with a TSPTW
solver”, we had to evaluate the quality of the city trip plans and the speed of
the application. To accomplish this, the LarKC application was used to test the
execution time, while a separate multithreaded Test Environment was used to
conduct the experiments evaluating the quality of the city trip plans.

The Test Environement was used to create a baseline: all the solutions of
a certain scenario on the Milan data set. The two strategies were compared to
the sorted baseline using the Discounted Cumulated Gain method. This method
is based on two principles: highly rated plannings are more valuable than low
rated plannings and the greater the ranked position of a relevant plan, the less
valuable it is for the user, because it is less likely the user will ever look at the
plan.

On the Milan data set the Discounted Cumulated Gain results of the Radius
strategy were significantly better than the results of the DTR strategy. Both
of them were closer to the optimal results than the worst possible results. We
were unable to run a baseline on the Amsterdam data set, due to the amount
of time needed to finish it. Lacking the baseline, no significance measures could
be applied, although on the Amsterdam data set the DTR strategy appeared
to be performing better than the Radius strategy.

Experiments to measure the execution time were conducted using both the
Amsterdam and Milan data sets. City trip plans generated using the two de-
veloped strategies were available within fifteen seconds, although the Radius
strategy was faster than the DTR strategy. The Amsterdam data set contains
more points than the Milan data set. Therefore, it takes significantly more time
to create city trip plans for Amsterdam.

Based on the results from these experiments we can confirm the hypothe-
sis. The city trip plans are of sufficient quality, they are closer to the optimal
result than the worst result and the execution times stay below fifteen seconds.
Although these results are very promising, the TSPTW solver appeared not
as reliable as we would like it to be, creating results of varying quality and
some invalid solutions. This is a component of the application which could be
replaced by a more stable plug-in. Additional future work can concern other
areas of implementation, improvements of the selection strategies, adding more
data sources and making the application available on mobile platforms.

103

Bibliography

[1] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2008.

[2] G. Antoniou and F. van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

[3] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press,
2007.

[4] G. Ashworth and S.J. Page. Urban tourism research: Recent progress and
current paradoxes. Tourism Management, 32(1):1 – 15, 2011.

[5] M. Assel, A. Cheptsov, B. Czink, C. Fuchs, N. Lanzanasto, V. Momtchev,
S. Kotoulas, L. Bradeško, B. Fortuna, and I. Toma. Final larkc architecture
and design, 2011. Deliverable D5.3.3.

[6] M. Assel, A. Cheptsov, G. Gallizo, I. Celino, D. Dell’Aglio, L. Bradeško,
M. Witbrock, and E. Della Valle. Large knowledge collider: a service-
oriented platform for large-scale semantic reasoning. In Proceedings of
the International Conference on Web Intelligence, Mining and Semantics,
WIMS ’11, pages 41:1–41:9, New York, NY, USA, 2011. ACM.

[7] S. Auer, J. Lehmann, and S. Hellmann. Linkedgeodata: Adding a spa-
tial dimension to the web of data. Lecture Notes in Computer Science,
5823:731–746, 2009.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 284(5):34–43, May 2001.

[9] D.P. Bhattacharyya. Mediating india: An analysis of a guidebook. Annals
of Tourism Research, 24(2):371 – 389, 1997.

[10] L. Bigras, M. Gamache, and G. Savard. The time-dependent traveling
salesman problem and single machine scheduling problems with sequence
dependent setup times. Discrete Optimization, 5(4):685 – 699, 2008.

104

[11] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems, 5(3):1–
22, 2009.

[12] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, 2004. Available at http://www.
w3.org/TR/2004/REC-rdf-schema-20040210/.

[13] B. Brown and M. Chalmers. Tourism and mobile technology. In Proceedings
of the eighth conference on European Conference on Computer Supported
Cooperative Work, pages 335–354, Norwell, MA, USA, 2003. Kluwer Aca-
demic Publishers.

[14] R.W. Calvo. A new heuristic for the traveling salesman problem with time
windows. Transportation Science, 34(1):113–124, 2000.

[15] W.B. Carlton and J.W. Barns. Solving the traveling-salesman problem with
time windows using tabu search. IIE transactions Science, 28(8), 1996.

[16] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Develop-
ing a context-aware electronic tourist guide: some issues and experiences.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’00, pages 17–24, New York, NY, USA, 2000. ACM.

[17] R.F. da Silva and S. Urrutia. A general vns heuristic for the traveling
salesman problem with time windows. Discrete Optimization, 7(4):203 –
211, 2010.

[18] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search
strategy, 1991.

[19] Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An optimal algo-
rithm for the traveling salesman problem with time windows. Operations
Research, 43(2):pp. 367–371, 1995.

[20] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham,
E. Della Valle, F. Fischer, Z. Huang, A. Kiryakov, T.K. Lee, L. Schooler,
V. Tresp, S. Wesner, M. Witbrock, and N. Zhong. Towards larkc: A plat-
form for web-scale reasoning. In Proceedings of the 2008 IEEE Interna-
tional Conference on Semantic Computing, pages 524–529, Washington,
DC, USA, 2008. IEEE Computer Society.

[21] F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the
tsptw. Informs Journal on Computing, 14:403–417, October 2002.

[22] D. Fogel. An evolutionary approach to the traveling salesman problem.
Biological Cybernetics, 60:139–144, 1988. 10.1007/BF00202901.

[23] K.R. Fox. Production scheduling on parallel lines with dependencies. PhD
thesis, John Hopkins University, 1973.

105

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[24] M. Gendreau, A. Hertz, G. Laporte, and M. Stan. A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations
Research, 46(3):pp. 330–335, 1998.

[25] L. Gouveia and S. Voss. A classification of formulations for the (time-
dependent) traveling salesman problem. European Journal of Operational
Research, 83(1):69 – 82, 1995.

[26] A. Guttman. R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 14:47–57, June 1984.

[27] K. Hagen, R. Kramer, M. Hermkes, B. Schumann, and P. Mueller. Semantic
matching and heuristic search for a dynamic tour guide. In Andrew J.
Frew, editor, Information and Communication Technologies in Tourism
2005, pages 149–159. Springer Vienna, 2005.

[28] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7:12–18, October 2008.

[29] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Trans. Inf. Syst., 20:422–446, October 2002.

[30] M. Kenteris, D. Gavalas, and D. Economou. An innovative mobile elec-
tronic tourist guide application. Personal and Ubiquitous Computing,
13:103–118, 2009.

[31] T. Kindberg, M. Chalmers, and E. Paulos. Guest editors’ introduction:
Urban computing. IEEE Pervasive Computing, 6:18–20, 2007.

[32] T. Kinoshita, M. Nagata, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito.
A personal navigation system for sightseeing across multiple days. In Proc.
of 3rd International Congress on Mobile Computing and Ubiquitous Net-
working (ICMU2006), pages 254–259, 2006.

[33] A. Langevin, M. Desrochers, J. Desrosiers, S. Gélinas, and F. Soumis.
A two-commodity flow formulation for the traveling salesman and the
makespan problems with time windows. Networks, 23(7):631–640, 1993.

[34] C. Lee, Y. Chang, and M. Wang. Ontological recommendation multi-agent
for tainan city travel. Expert Systems with Applications, 36(3, Part 2):6740
– 6753, 2009.

[35] A.A. Lew. A framework of tourist attraction research. Annals of Tourism
Research, 14(4):553 – 575, 1987.

[36] A. Maruyama, N. Shibata, Y. Murata, K. Yasumoto, and M. Ito. A personal
navigation system for sightseeing across multiple days. In Proc. of 11th
World Congress on ITS, pages 18–21, 2004.

[37] J. Miguens, R. Baggio, and C. Costa. Social media and tourism destina-
tions: Tripadvisor case study. Advances in Tourism Research, 2008.

106

[38] M. Nagata, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito. A method
to plan group tours with joining and forking. In Tzai-Der Wang, Xiaodong
Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guo-Liang
Chen, and Xin Yao, editors, Simulated Evolution and Learning, volume
4247 of Lecture Notes in Computer Science, pages 881–888. Springer Berlin
/ Heidelberg, 2006.

[39] J.W. Ohlmann and B.W. Thomas. A compressed-annealing heuristic for
the traveling salesman problem with time windows. Informs Journal on
Computing, 19(1):80–90, 2007.

[40] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 2009. Available at http://www.w3.
org/TR/owl2-overview/.

[41] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint
logic programming algorithm for the traveling salesman problem with time
windows. Transportation Science, 32(1):12–29, 1998.

[42] J. Picard and M. Queyranne. The time-dependent traveling salesman prob-
lem and its application to the tardiness problem in one-machine scheduling.
Operations Research, 26(1):pp. 86–110, 1978.

[43] S. Schmitz, A. Zipf, and Neis P. New applications based on collaborative
geodata - the case of routing. In XXVIII INCA International Congress on
Collaborative Mapping and SpaceTechnology, Gandhinagar, Gujarat, India,
2008.

[44] N. Shadbolt, W. Hall, and T. Berners-Lee. The semantic web revisited.
Intelligent Systems, IEEE, 21(3):96 –101, jan.-feb. 2006.

[45] W. Souffriau and P. Vansteenwegen. Tourist trip planning functionalities:
State of the art and future. In Florian Daniel and Federico Facca, edi-
tors, Current Trends in Web Engineering, volume 6385 of Lecture Notes in
Computer Science, pages 474–485. Springer Berlin / Heidelberg, 2010.

[46] C. Stadler, J. Lehmann, K. Höffner, and S. Auer. Linkedgeodata: A core
for a web of spatial open data. Submitted to the Semantic Web Journal,
2011.

[47] E. Della Valle, I. Celino, and D. Dell’Aglio. The experience of realizing
a semantic web urban computing application. In Proceedings of the Terra
Cognita Workshop 2009, colocated with ISWC 2009 - the 8th International
Semantic Web Conference, 25-29 October 2009 - Washington, DC, 2009.

[48] E. Della Valle, I. Celino, and D. Dell’Aglio. The experience of realizing a se-
mantic web urban computing application. Transactions in GIS, 14(2):163–
181, 2010.

107

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

[49] P. Vansteenwegen and D. Van Oudheusden. The mobile tourist guide: An
or opportunity. OR Insight, 20(3):21–27, 2007.

[50] P. Vansteenwegen, W.r Souffriau, G. Vanden Berghe, and D. Van Oud-
heusden. Iterated local search for the team orienteering problem with time
windows. Computers & Operations Research, 36(12):3281 – 3290, 2009.
New developments on hub location.

[51] B Wu, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito. A method for
composing tour schedules adaptive to weather change. In Intelligent Vehi-
cles Symposium, 2009 IEEE, pages 1407 –1412, june 2009.

108

Glossary

S-set
The set of all POIs contained in the problem space.

UC-set
Set containing the class preferences, represented by pairs of Ci and Xi,
where Xi is the amount of times a tourist likes to visit POIs categorized
with Ci.

UI-set
This set is used to give the user the option to indicate specific POIs that
he or she will definitely visit.

NUC-set
With the help of this set a user can specify which classes he or she definitely
would not like to visit.

T-set
A set of selected points for which the TSPTW solver will estimate a short
route visiting all the nodes in the given set.

Class C
A class is a set of elements which some POIs have in common, each POI
is an instance of a class.

Discounted Cumulated Gain (DCG)
An evaluation method originating from the field of information retrieval, is
developed in order to credit information retrieval methods for their ability
to retrieve highly relevant documents.

Large Knowledge Collider (LarKC)
A platform for massive distributed incomplete reasoning that will remove
the scalability barriers of currently existing reasoning systems for the Se-
mantic Web.

LarKC plug-in
The building blocks of a LarKC application, can be reused or created from
scratch.

109

LarKC workflow
Workflows are used within LarKC to create a sequence of plug-ins.

LinkedGeoData (LGD)
The LinkedGeoData project aims to be the geographical counterpart of
DBPedia, providing a dataset consisting of geographical data in the RDF
format, abstracted from the OSM project.

Normalized Discounted Cumulated Gain (nDCG)
An evaluation method originating from the field of information retrieval
that shows the performance of an information retrieval method relative to
the ideal situation, is calculated by dividing the DCG value of a strategy
with the DCG of the ideal situation.

Ontology
A common conceptualization, ontologies define the data and relations be-
tween concepts.

OpenStreetMap (OSM)
A community effort, aiming to create a set of map data which is free to
use.

Plan P
A plan for a city trip, represented by a list indicating the optimal sequence
of visiting the selected POIs.

Point Of Interest (POI)
Geographical points which might be of interest to a tourist.

RDF Schema (RDFS)
RDF Schema extends RDF and provides a minimal ontology representa-
tion language.

Resource Description Framework (RDF)
The Resource Description Framework is used to make statements about
resources.

Semantic Web
The Semantic Web extends the World Wide Webs infrastructure with
techniques making represented information not only readable for humans,
but also interpretable and operable for machines.

Service Time
The time in minutes a tourist will probably spend at a sight.

SPARQL Protocol and RDF Query Language
Query language used to retrieve information from RDF data sources.

110

Time Dependent Traveling Salesman Problem (TDTSP)
The problem of finding the shortest route between a set of points, while
the travel costs between the points are dependent on their position in the
tour.

Time Window
Sets the period of time in which a POI is relevant to a user. Time windows
can also be applied to a plan, indicating the period of time a tourist wants
to spend visiting POIs.

Tourist Trip Design Problem (TTDP)
The combination of the processes of choosing which POIs to visit and in
what order.

Traveling Salesman Problem (TSP)
The problem of finding the shortest route between a set of points, where
each point is visited exactly once.

Traveling Salesman Problem with Time Windows (TSPTW)
The problem of finding the shortest route between a set of points, while
considering time restrictions of the points.

Triple
A single statement about a resource, consisting of a subject, a predicate
and an object.

Universal Resource Identifier (URI)
Universal Resource Identifiers are used to identify resources.

111

Appendix A

Taxonomy

Appendix B

Ontology Mapping

Table B.1: Mapping of LinkedGeoData ontology to City Trip Planner ontology

LinkedGeoData class City Trip Planner class
Museum Museum
TourismMuseum Museum
Artgallery Artgallery
Monument Monument
PlaceOfWorship Church
HistoricChurch Church
Castle Castle
Fort Fort
HistoricRuins Ruins
Casino Casino
Nightclub Nightclub
Pub Pub
Park Park
NaturalBeach Beach
TourismZoo Zoo
TourismHotel Hotel
Hotel Hotel
Hostel Hostel
TourismApartments Apartment
Apartment Apartment
Restaurant Restaurant
Cafe Cafe
Bar Bar
IceCream IceCreamShop
FastFood FastFood

Continued on next page

113

Table B.1 – continued from previous page

LinkedGeoData class City Trip Planner class
Food FoodStore
Bakery Bakery
Supermarket Supermarket
Deli DeliShop
Delicatessen DeliShop
Cheese CheeseShop
Antique AntiqueShop
Antiques AntiqueShop
Books Bookshop
Art ArtShop
LiquorStore Alcohol
WineryShop WineryShop
Clothes ClothesShop
Fashion ClothesShop
Foto PhotographyStore
Photo PhotographyStore
Souvenir SouvenirShop
Souvenirs SouvenirShop
Gift GiftShop
Gifts GiftShop
Jewelry JewelleryShop
Kiosk Kiosk
Mall Mall
Market Market
Music MusicShop
Perfume Perfumery
Shoes ShoeShop
Toys ToyShop

114

	Introduction
	State Of The Art
	Semantic Web
	Semantic Web Basics
	Linked Data
	Resource Description Framework
	RDF Schema & The Web Ontology Language

	Large Knowledge Collider
	LarKC Architecture
	LarKC Plug-ins
	LarKC Workflows

	Traveling Salesman Problem
	Generic Traveling Salesman Problem
	Traveling Salesman Problem With Time Windows
	Time Dependent Traveling Salesman Problem

	OpenStreetMap.org & LinkedGeoData.org
	OpenStreetMap.org
	LinkedGeoData.org

	Electronic Guides
	TripAdvisor
	Lonely Planet & Rough Guide City Apps

	Automated City Trip Planners

	Problem Setting
	Scenario
	User Requirements
	Problem Formalization

	Architecture
	System Architecture In LarKC
	Modelling Points Of Interest
	Modelling The Distance Between Points Of Interest
	Categorizing Points Of Interest
	LarKC Plug-ins
	Planning Decider
	Point Selecter
	TSPTW Reasoner
	Rank Decider
	Cartographer

	Frontend

	Strategies
	Baseline Strategy
	Description Of The Baseline Strategy
	Example

	Distance Times Rating Strategy
	Radius Strategy

	Data
	Data Sources
	Pre-processing
	Localized Datasets
	Ontology Mapping
	Added Properties

	Data Analysis
	Data Quality

	Implementation
	Implementation Of Data Objects
	Point Of Interest
	Class

	Testing Environments
	Test Environment
	Grading Environment
	Evaluation Environment

	LarKC
	Planning Decider
	Point Selecter
	TSPTW Reasoner
	Rank Decider
	Cartographer

	Evaluation
	Method
	Cumulated Gain
	Success Criteria
	Experimental Settings

	Results
	Results Of The Execution Time Experiments
	Results Of The Quality Experiments
	Resulting City Trip Plans

	Discussion & Future Work
	Execution Time Experiment
	Quality Experiments
	Quality TSPTW Solver
	Conformation to The Semantic Web
	Future Work

	Conclusion
	Bibliography
	Glossary
	Taxonomy
	Ontology Mapping

